Skip to main content
Log in

Local-global principles for representations of quadratic forms

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We prove a local-global principle for the problem of representations of quadratic forms by quadratic forms over ℤ, in codimension ≥5. The proof uses the ergodic theory of p-adic groups, together with a fairly general observation on the structure of orbits of an arithmetic group acting on integral points of a variety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Artin, M.: Geometric Algebra. Interscience Publishers, Inc., New York London (1957)

    MATH  Google Scholar 

  2. Baez, J.: The octonions. Bull. Am. Math. Soc. New. Ser. 39(2), 145–205 (2002) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  3. Burger, M., Sarnak, P.: Ramanujan duals. II. Invent. Math. 106(1), 1–11 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cassels, J.W.S.: Rational Quadratic Forms. Academic Press, London, New York (1978)

    MATH  Google Scholar 

  5. Clozel, L.: Démonstration de la conjecture τ. Invent. Math. 151, 297–328 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Clozel, L., Ullmo, E.: Equidistribution des points de Hecke. In: Contributions to Automorphic Forms, Geometry, and Number Theory, pp. 193–254. Johns Hopkins Univ. Press, Baltimore, MD (2004)

    Google Scholar 

  7. Dani, S., Margulis, G.: Limit distributions of orbits of unipotent flows and values of quadratic forms. Adv. Sov. Math. 16, 91–137 (1993)

    MathSciNet  Google Scholar 

  8. Duke, W., Schulze-Pillot, R.: Representation of integers by positive ternary quadratic forms and equidistribution of lattice points on ellipsoids. Invent. Math. 99, 49–57 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  9. Eichler, M.: Quadratische Formen und orthogonale Gruppen. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, vol. LXIII. Springer, Berlin Göttingen Heidelberg (1952)

  10. Einsiedler, M.: Ratner’s theorem on SL(2,ℝ)-invariant measures. Jahresber. Deutsch. Math.-Verein. 108(3), 143–164 (2006)

    MATH  MathSciNet  Google Scholar 

  11. Einsiedler, M., Lindenstrauss, E.: Diagonalizable flows on locally homogeneous spaces and number theory. In: Proceedings of the ICM, vol. 11, pp. 1731–1759. Eur. Math. Society, Zurich (2006)

  12. Einsiedler, M., Lindenstrauss, E., Michel, P., Venkatesh, A.: The distribution of periodic torus orbits on homogeneous spaces. math.DS/0607815

  13. Einsiedler, M., Lindenstrauss, E., Michel, P., Venkatesh, A.: Distribution of periodic torus orbits and Duke’s theorem for cubic fields. arxiv:0708.1113

  14. Einsiedler, M., Margulis, G., Venkatesh, A.: Effective equidistribution of closed orbits of semisimple groups on homogeneous spaces. arxiv:0708.4040

  15. Ellenberg, J., Venkatesh, A.: Local-global principles for representations of quadratic forms. Arxived version, math.NT/0604232

  16. Eskin, A., Mozes, S., Shah, N.: Unipotent flows and counting lattice points on homogeneous varieties. Ann. Math. (2) 143, 253–299 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  17. Eskin, A., Oh, H.: Representations of integers by an invariant polynomial and unipotent flows. Duke Math. J. 135(3), 481–506 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gan, W., Gross, B.: Commutative subgroups of certain non-associative rings. Math. Ann. 314, 265–283 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  19. Gelbart, S., Jacquet, H.: A relation between automorphic representations of GL(2) and GL(3). Ann. Sci. Éc. Norm. Supér., IV. Sér. 11(4), 471–542 (1978)

    MATH  MathSciNet  Google Scholar 

  20. Gille, P., Moret-Bailly, L.: Actions algèbriques de groupes arithmètiques. Preprint

  21. Glasner, Y., Weiss, B.: Kazhdan’s property T and the geometry of the collection of invariant measures. Geom. Funct. Anal. 7, 917–935 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  22. Guralnick, R., Saxl, J.: Generation of finite almost simple groups by conjugates. J. Algebra 268(2), 519–571 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. Hsia, J.: Representations by spinor genera. Pac. J. Math. 63, 147–152 (1976)

    MATH  MathSciNet  Google Scholar 

  24. Hsia, J., Kitaoka, Y., Kneser, M.: Representations of positive definite quadratic forms. J. Reine Angew. Math. 301, 132–141 (1978)

    MATH  MathSciNet  Google Scholar 

  25. Jacobson, N.: Composition algebras and their automorphisms. Rend. Circ. Mat. Palermo, II. Ser. 7, 55–80 (1958)

    MATH  Google Scholar 

  26. Jacquet, H., Langlands, R.P.: Automorphic Forms on GL(2). Lect. Notes Math., vol. 114. Springer, Berlin New York (1970)

    MATH  Google Scholar 

  27. Kitaoka, Y.: Arithmetic of Quadratic Forms. Cambridge University Press, Cambridge, UK (1999)

    MATH  Google Scholar 

  28. Kneser, M.: Composition of binary quadratic forms. J. Number Theory 15, 406–413 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  29. Kneser, M.: Darstellungsmasse indefiniter quadratischer Formen. Math. Z. 77, 188–194 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  30. Linnik, Y.: Ergodic properties of algebraic number fields. Ergeb. Math. Grenzgeb., vol. 45. Springer, New York (1968)

    Google Scholar 

  31. Lubotzky, A.: Discrete groups, expanding graphs and invariant measures. Prog. Math., vol. 125. Birkhäuser, Basel (1994)

    MATH  Google Scholar 

  32. Margulis, G., Tomanov, G.: Invariant measures for actions of unipotent groups over local fields on homogeneous spaces. Invent. Math. 116, 347–392 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  33. Mozes, S., Shah, N.: On the space of ergodic invariant measures of unipotent flows. Ergodic Theory Dyn. Syst. 15 149–159 (1995)

    Google Scholar 

  34. Oh, H.: Hardy–Littlewood system and representations of integers by an invariant polynomial. Geom. Funct. Anal. 14, 791–809 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  35. O’Meara, T.: Introduction to quadratic forms. In: Classics in Mathematics. Springer, Berlin (2000)

  36. Platonov, V.P.: The problem of strong approximation and the Kneser-Tits hypothesis for algebraic groups. Izv. Akad. Nauk SSSR, Ser. Mat. 33, 1211–1219 (1969) (Russian)

    MathSciNet  Google Scholar 

  37. Prasad, G.: Elementary proof of a theorem of Bruhat–Tits–Rousseau and of a theorem of Tits. Bull. Soc. Math. Fr. 110, 197–202 (1982)

    MATH  Google Scholar 

  38. Ratner, M.: Raghunathan’s conjectures for Cartesian products of real and p-adic Lie groups. Duke. Math. J. 77, 275–382 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  39. Shimura, G.: Quadratic diophantine equations, the class number, and the mass formula. Bull. Am. Math. Soc., New Ser. 43, 285–304 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  40. Shimura, G.: Arithmetic and Analytic Theories of Quadratic Forms and Clifford Groups. Am. Math. Soc., Providence, RI (2004)

    MATH  Google Scholar 

  41. Schulze-Pillot, R.: Representation by integral quadratic forms – a survey. In: Algebraic and Arithmetic Theory of Quadratic Forms. Contemp. Math., vol. 344, pp. 303–321. Am. Math. Soc., Providence, RI (2004)

    Google Scholar 

  42. Tits, J.: Algebraic and abstract simple groups. Ann. Math. (2) 80, 313–329 (1964)

    Article  MathSciNet  Google Scholar 

  43. Weil, A.: Sur la théorie des formes quadratiques. In: Colloq. Théorie des Groupes Algébriques (Bruxelles 1962), pp. 9–22. Librairie Universitaire, Louvain, Gauthier-Villars, Paris

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akshay Venkatesh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellenberg, J., Venkatesh, A. Local-global principles for representations of quadratic forms. Invent. math. 171, 257–279 (2008). https://doi.org/10.1007/s00222-007-0077-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-007-0077-7

Keywords

Navigation