Skip to main content
Log in

Transcendence measures and algebraic growth of entire functions

  • Published:
Inventiones mathematicae Aims and scope

Abstract

In this paper we obtain estimates for certain transcendence measures of an entire function f. Using these estimates, we prove Bernstein, doubling and Markov inequalities for a polynomial P(z,w) in ℂ2 along the graph of f. These inequalities provide, in turn, estimates for the number of zeros of the function P(z,f(z)) in the disk of radius r, in terms of the degree of P and of r.

Our estimates hold for arbitrary entire functions f of finite order, and for a subsequence {n j } of degrees of polynomials. But for special classes of functions, including the Riemann ζ-function, they hold for all degrees and are asymptotically best possible. From this theory we derive lower estimates for a certain algebraic measure of a set of values f(E), in terms of the size of the set E.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker, A.: Transcendental Number Theory. Cambridge Univ. Press, Cambridge (1975)

    MATH  Google Scholar 

  2. Bos, L., Brudnyi, A., Levenberg, N., Totik, V.: Tangential Markov inequalities on transcendental curves. Constructive Approximation 19, 339–354 (2003)

    Article  MATH  Google Scholar 

  3. Bos, L., Levenberg, N., Milman , P., Taylor, B.A.: Tangential Markov inequalities characterize algebraic submanifolds of ℝn. Indiana Univ. Math. J. 44, 115–138 (1995)

    Article  MATH  Google Scholar 

  4. Brudnyi, A.: Local inequalities for plurisubharmonic functions. Ann. Math. (2) 149, 511–533 (1999)

    Article  MATH  Google Scholar 

  5. Coman, D., Poletsky, E.A.: Bernstein–Walsh inequalities and the exponential curve in ℂ2. Proc. Am. Math. Soc. 131, 879–887 (2003)

    Article  MATH  Google Scholar 

  6. Coman, D., Poletsky, E.A.: Measures of transcendency for entire functions. Mich. Math. J. 51, 575–591 (2003)

    Article  MATH  Google Scholar 

  7. Dufresnoy, J.: Sur les domaines couverts par les valeurs d’une fonction méromorphe ou algébroide. Ann. Sci. Éc. Norm. Supér. 58, 179–259 (1941)

    MATH  Google Scholar 

  8. Fefferman, C., Narasimhan, R.: On the polynomial-like behavior of certain algebraic functions. Ann. Inst. Fourier 44, 1091–1179 (1994)

    Google Scholar 

  9. Francoise, J.P., Yomdin, Y.: Bernstein inequalities and applications to analytic geometry and differential equations. J. Funct. Anal. 146, 185–205 (1997)

    Article  MATH  Google Scholar 

  10. Gelfond, A.O.: Algebraic and Transcendental Numbers. Dover Publications, New York (1960)

    MATH  Google Scholar 

  11. Gramain, F., Schnitzer, F.J.: Ganze ganzwertige Funktionen: Historische Bemerkungen. In: Complex Methods on Partial Differential Equations. Math. Res., vol. 53. pp. 151–177. Akademie, Berlin (1989)

  12. Hayman, W.K.: Meromorphic Functions. Clarendon Press, Oxford (1964)

    MATH  Google Scholar 

  13. Ilyashenko, Y.: Centennial history of Hilbert’s 16th problem. Bull. Am. Math. Soc. 39, 301–354 (2002)

    Article  MATH  Google Scholar 

  14. Klimek, M.: Pluripotential Theory. Oxford Univ. Press, New York (1991)

    MATH  Google Scholar 

  15. Lang, S.: Introduction to Transcendental Numbers. Addison-Wesley, Reading, MA-London-Don Mills, ON (1966)

    MATH  Google Scholar 

  16. Levin, B.Y.: Distribution of Zeros of Entire Functions. Transl. Math. Monographs, vol. 5. Am. Math. Soc., Providence, RI (1964)

    MATH  Google Scholar 

  17. Mahler, K.: Lectures on Transcendental Numbers. Lect. Notes Math., vol. 546. Springer, Berlin-New York (1976)

    MATH  Google Scholar 

  18. Roytwarf, N., Yomdin, Y.: Bernstein classes. Ann. Inst. Fourier 47, 825–858 (1997)

    MATH  Google Scholar 

  19. Sadullaev, A.: An estimate for polynomials on analytic sets. Math. USSR Izv. 20, 493–502 (1983)

    Article  MATH  Google Scholar 

  20. Schneider, T.: Ein Satz über ganzwertige Funktionen als Prinzip für Transzendenzbeweise. Math. Ann. 121, 131–140 (1949)

    Article  Google Scholar 

  21. Sodin, M.L.: Zeros and units of entire functions. Ukr. Math. J. 40, 91–95 (1988)

    Article  MATH  Google Scholar 

  22. Strauss, E.G.: On entire functions with algebraic derivatives at certain algebraic points. Ann. Math. 52, 188–198 (1950)

    Article  Google Scholar 

  23. Tijdeman, R.: On the number of zeros of general exponential polynomials. Indag. Math. 33, 1–7 (1971)

    Google Scholar 

  24. Tijdeman, R.: On the algebraic independence of certain numbers. Indag. Math. 33, 146–162 (1971)

    Google Scholar 

  25. Titchmarsh, E.C.: The Theory of the Riemann Zeta-Function. Clarendon Press, Oxford Univ. Press, New York (1986)

    MATH  Google Scholar 

  26. Waldschmidt, M.: Pólya’s theorem by Schneider’s method. Acta Math. Acad. Sci. Hungar. 31, 21–25 (1978)

    Article  MATH  Google Scholar 

  27. Yomdin, Y.: Volume growth and entropy. Isr. J. Math. 57, 285–300 (1987)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Coman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coman, D., Poletsky, E. Transcendence measures and algebraic growth of entire functions. Invent. math. 170, 103–145 (2007). https://doi.org/10.1007/s00222-007-0058-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-007-0058-x

Keywords

Navigation