Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered Riemann surfaces

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Basmajian, A.: The orthogonal spectrum of a hyperbolic manifold. Am. J. Math. 115, 1139–1159 (1993)

    MATH  MathSciNet  Article  Google Scholar 

  2. 2.

    Birman, J.S., Series, C.: Geodesics with bounded intersection number on surfaces are sparsely distributed. Topology 24, 217–225 (1985)

    MATH  MathSciNet  Article  Google Scholar 

  3. 3.

    Bismut, J.-M., Labourie, F.: Symplectic geometry and the Verlinde formulas. In: Surveys in Differential Geometry: Differential Geometry Inspired by String Theory, vol. 5 of Surv. Differ. Geom., pp. 97–331. Boston, MA: Int. Press 1999

  4. 4.

    Buser, P.: Geometry and Spectra of Compact Riemann Surfaces. Boston: Birkhäuser 1992

  5. 5.

    Canary, R.D., Epstein, D.B.A., Green, P.: Notes on notes of Thurston. In: Analytical and Geometric Aspects of Hyperbolic Space, pp. 3–92. Cambridge :Cambridge University Press 1987

  6. 6.

    Donaldson, S.: Gluing techniques in the cohomology of moduli spaces. In: Topological Methods in Modern Mathematics, pp. 137–170. Houston, TX: Publish or Perish 1993

  7. 7.

    Goldman, W.: The symplectic nature of fundamental groups of surfaces. Adv. Math. 54, 200–225 (1984)

    MATH  Article  Google Scholar 

  8. 8.

    Harer, J.L., Penner, R.C.: Combinatorics of Train Tracks. Annals of Math. Studies, vol. 125. Princeton, NJ: Princeton University Press 1992

  9. 9.

    Harris, J., Morrison, I.: Moduli of Curves. Graduate Texts in Mathematics, vol. 187. New York: Springer 1998

  10. 10.

    Hocking, J., Young, G.: Topology. New York: Dover Publication 1988

  11. 11.

    Imayoshi, Y., Taniguchi, M.: An Introduction to Teichmüller Spaces. Tokyo: Springer 1992

  12. 12.

    Jeffrey, L., Kirwan, F.: Intersection theory on moduli spaces of holomorphic bundles of arbitrary rank on a Riemann surface. Ann. Math. (2) 148, 109–196 (1998)

    MATH  MathSciNet  Article  Google Scholar 

  13. 13.

    Kaufmann, R., Manin, Y., Zagier, D.: Higher Weil-Petersson volumes of moduli spaces of stable n-pointed curves. Commun. Math. Phys. 181, 736–787 (1996)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Kirwan, F.: Momentum maps and reduction in algebraic geometry. Differ. Geom. Appl. 9, 135–171 (1998)

    MATH  MathSciNet  Article  Google Scholar 

  15. 15.

    Kontsevich, M.: Intersection on the moduli space of curves and the matrix airy function. Commun. Math. Phys. 147, 1–23 (1992)

    MATH  MathSciNet  Article  Google Scholar 

  16. 16.

    Labourie, F., McShane, G.: Cross ratios and identities for higher Thurston theory. Preprint 2006

  17. 17.

    Manin, Y., Zograf, P.: Invertible cohomological field theories and Weil-Petersson volumes. Ann. Inst. Fourier 50, 519–535 (2000)

    MATH  MathSciNet  Google Scholar 

  18. 18.

    McDuff, D.: Introduction to Symplectic Topology. Providence, RI: Am. Math. Soc. 1999

  19. 19.

    McShane, G.: Simple geodesics and a series constant over Teichmüller space. Invent. Math. 132, 607–632 (1998)

    MATH  MathSciNet  Article  Google Scholar 

  20. 20.

    Mirzakhani, M.: Growth of the number of simple closed geodesics on a hyperbolic surface. To appear in Ann. Math.

  21. 21.

    Mirzakhani, M.: Weil-Petersson volumes and intersection theory on the moduli space of curves. To appear in J. Am. Math. Soc.

  22. 22.

    Nakanishi, T., Näätänen, M.: Areas of two-dimensional moduli spaces. Proc. Am. Math. Soc. 129, 3241–3252 (2001)

    MATH  Article  Google Scholar 

  23. 23.

    Penner, R.: Weil-Petersson volumes. J. Differ. Geom. 35, 559–608 (1992)

    MATH  MathSciNet  Google Scholar 

  24. 24.

    Tan, S.P., Wong, Y., Zhang, Y.: Necessary and sufficient conditions for McShane’s identity and variations. Preprint 2004

  25. 25.

    Tan, S.P., Wong, Y., Zhang, Y.: Generalizations of McShane’s identity to hyperbolic cone-surfaces. J. Differ. Geom. 72, 73–111 (2006)

    MATH  MathSciNet  Google Scholar 

  26. 26.

    Wolpert, S.: The Fenchel-Nielsen deformation. Ann. Math. 115, 501–528 (1982)

    MATH  MathSciNet  Article  Google Scholar 

  27. 27.

    Wolpert, S.: On the homology of the moduli space of stable curves. Ann. Math. (2) 118, 491–523 (1983)

    MATH  MathSciNet  Article  Google Scholar 

  28. 28.

    Zograf, P.: The Weil-Petersson volume of the moduli space of punctured spheres. In: Mapping Class Groups and Moduli Spaces of Riemann Surfaces. Contemp. Math., vol. 150, pp. 367–372. Providence, RI: Am. Math. Soc. 1993

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Maryam Mirzakhani.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mirzakhani, M. Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered Riemann surfaces. Invent. math. 167, 179–222 (2007). https://doi.org/10.1007/s00222-006-0013-2

Download citation

Keywords

  • Modulus Space
  • Riemann Surface
  • Boundary Component
  • Recursive Formula
  • Mapping Class Group