References
Aubin, T.: Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire. J. Math. Pures Appl., IX. Sér. 55, 269–296 (1976)
Bahouri, H., Gérard, P.: High frequency approximation of solutions to critical nonlinear wave equations. Am. J. Math. 121, 131–175 (1999)
Berestycki, H., Cazenave, T.: Instabilité des états stationnaires dans les équations de Schrödinger et de Klein–Gordon non linéaires. C. R. Acad. Sci., Paris, Sér. I, Math. 293, 489–492 (1981)
Bergh, J., Lofstrom, J.: Interpolation Spaces. An Introduction. Grundlehren der Mathematischen Wissenschaften, No. 223. Berlin, New York: Springer 1976
Bourgain, J.: Global well-posedness of defocusing critical nonlinear Schrödinger equation in the radial case. J. Am. Math. Soc. 12, 145–171 (1999)
Bourgain, J.: New global well-posedness results for nonlinear Schrödinger equations. AMS Colloquium Publications, 46, 1999
Cazenave, T.: Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics, vol. 10. New York: New York University Courant Institute of Mathematical Sciences 2003
Cazenave, T., Weissler, F.B.: The Cauchy problem for the critical nonlinear Schrödinger equation in H s. Nonlinear Anal., Theory Methods Appl. 14, 807–836 (1990)
Colliander, J., Keel, M., Staffilani, G., Takaoke, H., Tao, T.: Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in ℝ3. To appear in Ann. Math.
Gérard, P.: Description du défaut de compacité de l’injection de Sobolev. ESAIM Control Optim. Calc. Var. 3, 213–233 (1998)
Gerard, P., Meyer, Y., Oru, F.: Inégalités de Sobolev précisées, Séminaire sur les Équations aux Dérivées Partielles, 1996–1997, Exp. No. IV, 11. École Polytech. 1997
Glassey, R.T.: On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations. J. Math. Phys. 18, 1794–1797 (1977)
Grillakis, M.G.: On nonlinear Schrödinger equations. Commun. Partial Differ. Equations 25, 1827–1844 (2000)
Keel, M., Tao, T.: Endpoint Strichartz estimates. Am. J. Math. 120, 955–980 (1998)
Keraani, S.: On the defect of compactness for the Strichartz estimates of the Schrödinger equations. J. Differ. Equations 175, 353–392 (2001)
Keraani, S.: On the blow up phenomenon of the critical Schrödinger equation. J. Funct. Anal. 235, 171–192 (2006)
Merle, F.: Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power. Duke Math. J. 69, 427–454 (1993)
Merle, F.: On uniqueness and continuation properties after blow-up time of self-similar solutions of nonlinear Schrödinger equation with critical exponent and critical mass. Comm. Pure Appl. Math. 45, 203–254 (1992)
Merle, F.: Existence of blow-up solutions in the energy space for the critical generalized KdV equation. J. Am. Math. Soc. 14, 555–578 (2001)
Merle, F., Tsutsumi, Y.: L 2 concentration of blow-up solutions for the nonlinear Schrödinger equation with critical power nonlinearity. J. Differ. Equations 84, 205–214 (1990)
Merle, F., Vega, L.: Compactness at blow-up time for L 2 solutions of the critical nonlinear Schrödinger equation in 2D. Int. Math. Res. Not. 8, 399–425 (1998)
Ogawa, T., Tsutsumi, Y.: Blow-up of H 1 solution for the nonlinear Schrödinger equation. J. Differ. Equations 92, 317–330 (1991)
Raphael, P.: Existence and stability of a solution blowing-up on a sphere for a L 2 supercritical nonlinear Schrödinger equation. Duke Math. J. 134(2), 199–258 (2006)
Ryckman, E., Visan, M.: Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in ℝ1+4. To appear in Amer. J. Math. Preprint, http://arkiv.org/abs/math.AP/0501462
Talenti, G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. 110, 353–372 (1976)
Tao, T.: Global well-posedness and scattering for the higher-dimensional energy-critical nonlinear Schrödinger equation for radial data. New York J. Math. 11, 57–80 (2005)
Tao, T., Visan, M.: Stability of energy-critical nonlinear Schrödinger equations in high dimensions. Electron. J. Differ. Equ. 118, 28 (2005)
Visan, M.: The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions. Preprint, http://arkiv.org/abs/math.AP/0508298
Weinstein, M.: Nonlinear Schrödinger equations and sharp interpolation estimates. Commun. Math. Phys. 87, 567–576 (1982/83)
Zhang, J.: Sharp conditions of global existence for nonlinear Schrödinger and Klein–Gordon equations. Nonlinear Anal., Theory Methods Appl. 48, 191–207 (2002)
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Kenig, C., Merle, F. Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case . Invent. math. 166, 645–675 (2006). https://doi.org/10.1007/s00222-006-0011-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00222-006-0011-4