Skip to main content
Log in

Perverse sheaves, Koszul IC-modules, and the quiver for the category \(\mathcal{O}\)

  • Published:
Inventiones mathematicae Aims and scope

Abstract

For a stratified topological space we introduce the category of IC-modules, which are linear algebra devices with the relations described by the equation d 2=0. We prove that the category of (mixed) IC-modules is equivalent to the category of (mixed) perverse sheaves for flag varieties. As an application, we describe an algorithm calculating the quiver underlying the BGG category \(\mathcal{O}\) for arbitrary simple Lie algebra, thus answering a question which goes back to I. M. Gelfand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Beilinson, A.: How to glue perverse sheaves. K-theory, arithmetic and geometry (Moscow, 1984–1986). LNM, vol. 1289, pp. 42–51. Berlin: Springer 1987

  2. Beilinson, A., Bernstein, J.: Localisation de g-modules. C.R. Acad. Sci. Paris, Sér. I, Math. 292, 15–18 (1981)

    MATH  MathSciNet  Google Scholar 

  3. Beilinson, A., Bernstein, J., Deligne, P., Fasceaux pervers. Analysis and topology on singular spaces, I (Luminy, 1981). Astérisque, vol. 100, pp. 5–171. Paris: Soc. Math. France 1982

  4. Beilinson, A., Ginzburg, V., Soergel, W.: Koszul duality patterns in representation theory. J. Am. Math. Soc. 9, 473–527 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bernstein, J., Gelfand, I., Gelfand, S.: Structure of representations that are generated by vectors of higher weight. Funkts. Anal. Prilozh. 5, 1–9 (1971)

    MATH  MathSciNet  Google Scholar 

  6. Bernstein, J., Gelfand, I., Gelfand, S.: Schubert cells and the cohomology of a flag space. Funkts. Anal. Prilozh. 7, 64–65 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bernstein, J., Gelfand, I., Gelfand, S.: A certain category of \(\mathfrak{g}\)-modules. Funkts. Anal. Prilozh. 10, 1–8 (1976)

    MathSciNet  Google Scholar 

  8. Bernstein, J., Gelfand, S.: Tensor products of finite- and infinite-dimensional representations of semisimple Lie algebras. Compos. Math. 41, 245–285 (1980)

    MATH  MathSciNet  Google Scholar 

  9. Braden, T.: Perverse sheaves on Grassmannians. Can. J. Math. 54, 493–532 (2002)

    MATH  MathSciNet  Google Scholar 

  10. Braden, T.: Koszul duality for toric varieties. Preprint, 2003, math.AG/0308216

  11. Braden, T., Grinberg, M.: Perverse sheaves on rank stratifications. Duke Math. J. 96, 317–362 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Braden, T., MacPherson, R.: From moment graphs to intersection cohomology. Math. Ann. 321, 533–551 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Brylinski, J.-L., Kashiwara, M.: Kazhdan-Lusztig conjecture and holonomic systems. Invent. Math. 64, 387–410 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  14. Chevalley, C.: Sur les décompositions cellulaires des espaces G/B. Proc. Sympos. Pure Math., vol. 56, Part 1, pp. 1–23. Providence, RI: Am. Math. Soc. 1994

  15. Dyer, M.: Modules for the dual nil Hecke ring. Preprint

  16. Eisenbud, D.: Commutative algebra. With a view toward algebraic geometry. Graduate Texts in Mathematics, vol. 150. New York: Springer 1995

  17. Fulton, W., Woodward, C.: On the quantum product of Schubert classes. J. Algebraic Geom. 13, 641–661 (2004)

    Google Scholar 

  18. Gelfand, I.: The cohomology of infinite dimensional Lie algebras: some questions of integral geometry. Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 1, pp. 95–111. Paris: Gauthier-Villars 1971

  19. Gelfand, S., MacPherson, R., Vilonen, K.: Perverse sheaves and quivers. Duke Math. J. 83, 621–643 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ginzburg, V.: Perverse sheaves and C *-actions. J. Am. Math. Soc. 4, 483–490 (1991)

    Article  MathSciNet  Google Scholar 

  21. Goresky, M., MacPherson, R.: Intersection homology theory. Topology 19, 135–162 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  22. Goresky, M., MacPherson, R.: Intersection homology. II. Invent. Math. 72, 77–129 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  23. Irving, R.: Projective modules in the category \(\mathcal{O}\). Preprint, 1982

  24. Irving, R.: Projective modules in the category \(\mathcal{O}_{S}\): self-duality. Trans. Am. Math. Soc. 291, 701–732 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kashiwara, M., Schapira, P.: Sheaves on Manifolds. Berlin: Springer 1990

  26. Kazhdan, D., Lusztig, G.: Representations of Coxeter groups and Hecke algebras. Invent. Math. 53, 165–184 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  27. Kazhdan, D., Lusztig, G.: Schubert varieties and Poincaré duality. In: Geometry of the Laplace operator, pp. 185–203, Proc. Sympos. Pure Math., XXXVI. Providence, RI: Am. Math. Soc. 1980

  28. Keller, B.: Introduction to A-infinity algebras and modules. Homology Homotopy Appl. 3, 1–35 (2001) (electronic)

    MathSciNet  MATH  Google Scholar 

  29. MacPherson, R.: Lectures at MIT, 1993

  30. MacPherson, R., Vilonen, K.: Elementary construction of perverse sheaves. Invent. Math. 84, 403–435 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  31. MacPherson, R., Vilonen, K.: Perverse sheaves with singularities along the curve x n=y m. Comment. Math. Helv. 63, 89–102 (1988)

    MATH  MathSciNet  Google Scholar 

  32. Mirković, I., Vybornov, M.: Perverse cells in projective spaces. Preprint, 2003

  33. Polishchuk, A.: Perverse sheaves on a triangulated space. Math. Res. Lett. 4, 191–199 (1997)

    MATH  MathSciNet  Google Scholar 

  34. Saper, L.: L-modules and micro-support. Preprint, 2001, math.RT/0112251

  35. Soergel, W.: Kategorie \(\mathcal{O}\), perverse Garben und Moduln über den Koinvarianten zur Weylgruppe. J. Am. Math. Soc. 3, 421–445 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  36. Soergel, W.: Combinatorics of Harish–Chandra modules. In: Proceedings of the NATO ASI 1997 in Montreal on Representation Theories and Algebraic Geometry, pp. 401–412, A. Broer (ed.). Kluwer 1998 .

  37. Soergel, W.: Langlands’ philosophy and Koszul duality. Algebra-Representation Theory (Constanta, 2000), pp. 379–414. Dordrecht: Kluwer 2001

  38. Stroppel, C.: Category \(\mathcal{O}\): quivers and endomorphism rings of projectives. Represent. Theory 7, 322–345 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  39. Vybornov, M.: Constructible sheaves on simplicial complexes and Koszul duality. Math. Res. Lett. 5, 675–683 (1998)

    MATH  MathSciNet  Google Scholar 

  40. Vybornov, M.: Sheaves on triangulated spaces and Koszul duality. Preprint 2000, math.AT/9910150

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxim Vybornov.

Additional information

Dedicated to George Lusztig on the occasion of his 60-th birthday

Mathematics Subject Classification (1991)

14F43, 17B10, 32S60

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vybornov, M. Perverse sheaves, Koszul IC-modules, and the quiver for the category \(\mathcal{O}\) . Invent. math. 167, 19–46 (2007). https://doi.org/10.1007/s00222-006-0005-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-006-0005-2

Keywords

Navigation