Skip to main content

Mirror symmetry for Del Pezzo surfaces: Vanishing cycles and coherent sheaves


We study homological mirror symmetry for Del Pezzo surfaces and their mirror Landau-Ginzburg models. In particular, we show that the derived category of coherent sheaves on a Del Pezzo surface X k obtained by blowing up ℂℙ2 at k points is equivalent to the derived category of vanishing cycles of a certain elliptic fibration W k :M k →ℂ with k+3 singular fibers, equipped with a suitable symplectic form. Moreover, we also show that this mirror correspondence between derived categories can be extended to noncommutative deformations of X k , and give an explicit correspondence between the deformation parameters for X k and the cohomology class [B+iω]∈H 2(M k ,ℂ).

This is a preview of subscription content, access via your institution.


  1. Arnol’d, V.I.: Some remarks on symplectic monodromy of Milnor fibrations. In: The Floer Memorial Volume, ed. by H. Hofer, C. Taubes, A. Weinstein, E. Zehnder. Prog. Math., vol. 133, pp. 99–104. Basel: Birkhäuser 1995

  2. Artin, M., Tate, J., Van den Bergh, M.: Some algebras associated to automorphisms of elliptic curves. The Grothendieck Festschrift, vol. I. Prog. Math., vol. 86, pp. 33–85. Boston: Birkhäuser 1990

  3. Auroux, D., Katzarkov, L., Orlov, D.: Mirror symmetry for weighted projective planes and their noncommutative deformations. To appear in Ann. Math. (math.AG/0404281)

  4. Beilinson, A.: Coherent sheaves on P n and problems in linear algebra. Funct. Anal. Appl. 12, 68–69 (1978)

    MATH  MathSciNet  Article  Google Scholar 

  5. Bondal, A., Kapranov, M.: Enhanced triangulated categories. Mat. Sb. 181, 669–683 (1990); transl. in Math. USSR Sb. 70, 93–107 (1991)

    Google Scholar 

  6. Bondal, A., Polishchuk, A.: Homological properties of associative algebras: the method of helices. Izv. Ross. Akad. Nauk, Ser. Mat. 57, 3–50 (1993); transl. in Russian Acad. Sci. Izv. Math. 42, 216–260 (1994)

    Google Scholar 

  7. Fay, J.: Theta Functions and Riemann Surfaces. Lecture Notes in Math., vol. 352. Berlin, New York: Springer 1973

  8. Gompf, R.E., Stipsicz, A.I.: 4-manifolds and Kirby calculus. In: Graduate Studies in Math., vol. 20. Providence: Am. Math. Soc. 1999

  9. Griffiths, P., Harris, J.: Principles of Algebraic Geometry. New York: Wiley-Interscience 1978

  10. Hori, K., Iqbal, A., Vafa, C.: D-branes and mirror symmetry. hep-th/0005247

  11. Kapustin, A., Li, Y.: D-branes in Landau-Ginzburg models and algebraic geometry. J. High Energy Phys. 0312, 005, (2003) (hep-th/0210296) (electronic)

  12. Kontsevich, M.: Homological algebra of mirror symmetry. Proc. International Congress of Mathematicians (Zürich, 1994), pp. 120–139. Basel: Birkhäuser 1995

  13. Kontsevich, M.: Lectures at ENS, Paris, Spring 1998, notes taken by J. Bellaiche, J.-F. Dat, I. Marin, G. Racinet and H. Randriambololona

  14. Kuleshov, S., Orlov, D.: Exceptional sheaves on del Pezzo surfaces. Izv. RAN, Ser. Mat. 58, 57–91 (1994)

    Google Scholar 

  15. Mumford, D.: Tata lectures on theta. I. Prog. Math., vol. 28. Boston: Birkhäuser 1983; II: Jacobian theta functions and differential equations. Prog. Math., vol. 43. Birkhäuser: Boston 1984

  16. Orlov, D.: Projective bundles, monoidal transformations and derived categories of coherent sheaves. Izv. Akad. Nauk SSSR, Ser. Mat. 56, 852–862 (1992); transl. in Math. USSR Izv. 38, 133–141 (1993)

  17. Orlov, D.: Triangulated categories of singularities and D-branes in Landau-Ginzburg models. Tr. Mat. Inst. Steklova 246, 240–262 (2004); transl. in Proc. Steklov Inst. Math. 246,227–249 (2004); (math.AG/0302304)

  18. Seidel, P.: Vanishing cycles and mutation. Proc. 3rd European Congress of Mathematics (Barcelona, 2000), vol. II. Prog. Math., vol. 202, pp. 65–85. Basel: Birkhäuser 2001 (math.SG/0007115)

  19. Seidel, P.: More about vanishing cycles and mutation. Symplectic Geometry and Mirror Symmetry. Proc. 4th KIAS International Conference (Seoul, 2000), pp. 429–465. Singapore: World Sci. 2001 (math.SG/0010032)

  20. Seidel, P.: Homological mirror symmetry for the quartic surface. Preprint (math.SG/0310414)

  21. Seidel, P.: Fukaya categories and Picard-Lefschetz theory. In preparation

  22. Ueda, K.: Homological mirror symmetry for toric Del Pezzo surfaces. Commun. Math. Phys. 264, 71–85 (2006)

    MathSciNet  Article  Google Scholar 

  23. Van den Bergh, M.: Blowing Up Non-Commutative Smooth Surfaces. Mem. Am. Math. Soc. 154, no. 734 (2001) (math.QA/9809116)

Download references

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Denis Auroux, Ludmil Katzarkov or Dmitri Orlov.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Auroux, D., Katzarkov, L. & Orlov, D. Mirror symmetry for Del Pezzo surfaces: Vanishing cycles and coherent sheaves . Invent. math. 166, 537–582 (2006).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Line Bundle
  • Symplectic Form
  • Theta Function
  • Cohomology Class
  • Pezzo Surface