Inventiones mathematicae

, Volume 163, Issue 2, pp 289–312 | Cite as

Finiteness of relative equilibria of the four-body problem

Article

Abstract

We show that the number of relative equilibria of the Newtonian four-body problem is finite, up to symmetry. In fact, we show that this number is always between 32 and 8472. The proof is based on symbolic and exact integer computations which are carried out by computer.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

References

  1. 1.
    Albouy, A.: Integral Manifolds of the N-body problem. Invent. Math. 114, 463–488 (1993)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Albouy, A.: The symmetric central configurations of four equal masses. In: Hamiltonian Dynamics and Celestial Mechanics, Contemp. Math. 198 (1996)Google Scholar
  3. 3.
    Albouy, A., Chenciner, A.: Le problème des n corps et les distances mutuelles. Invent. Math. 131, 151–184 (1998)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Avis, D.: lrs – Version 4.1. http://cgm.cs.mcgill.ca/∼avis/C/lrs.htmlGoogle Scholar
  5. 5.
    Avis, D., Fukuda, K.: A Pivoting Algorithm for Convex Hulls and Vertex Enumeration of Arrangements and Polyhedra. Discrete Comput. Geom. 8, 295–313 (1992)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Bernstein, D.N.: The number of roots of a system of equations. Funct. Anal. Appl. 9, 183–185 (1975)CrossRefMATHGoogle Scholar
  7. 7.
    Cabral, H.: On the integral manifolds of the n-body problem. Invent. Math. 20, 59–72 (1973)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Chazy, J.: Sur certaines trajectoires du problème des n corps. Bull. Astron. 35, 321–389 (1918)Google Scholar
  9. 9.
    Christof, T., Loebel, A.: PORTA: POlyhedron Representation Transformation Algorithm, Version 1.3.2. http://www.iwr.uni-heidelberg.de/∼iwr/comopt/soft/PORTA/readme.htmlGoogle Scholar
  10. 10.
    Cox, D., Little, J., O’Shea, D.: Ideals, varieties, and algorithms. An introduction to computational algebraic geometry and commutative algebra. New York: Springer 1997Google Scholar
  11. 11.
    Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry. New York: Springer 1998Google Scholar
  12. 12.
    Dziobek, O.: Über einen merkwürdigen Fall des Vielkörperproblems. Astron. Nachr. 152, 33–46 (1900)Google Scholar
  13. 13.
    Emiris, I.: Mixvol. http://www.inria.fr/saga/emirisGoogle Scholar
  14. 14.
    Emiris, I., Canny, J.: Efficient incremental algorithm for the sparse resultant and the mixed volume. J. Symb. Comput. 20, 117–149 (1995)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Euler, L.: De motu rectilineo trium corporum se mutuo attrahentium. Novi Comm. Acad. Sci. Imp. Petrop. 11, 144–151 (1767)Google Scholar
  16. 16.
    Hampton, M.: Concave Central Configurations in the Four Body Problem. Thesis, University of Washington 2002Google Scholar
  17. 17.
    Grayson, D.R., Sullivan, M.E.: Macaulay 2, a software system for research in algebraic geometry and commutative algebra. http://www.math.uic.edu/Macaulay2/Google Scholar
  18. 18.
    http://www.math.umn.edu/∼rickGoogle Scholar
  19. 19.
    Huber, B., Sturmfels, B.: A polyhedral method for solving sparse polynomial systems. Math. Comput. 64, 1541–1555 (1995)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Khovansky, A.G.: Newton polyhedra and toric varieties. Funct. Anal. Appl. 11, 289–296 (1977)CrossRefGoogle Scholar
  21. 21.
    Kushnirenko, A.G.: Newton polytopes and the Bézout theorem. Funct. Anal. Appl. 10, 233–235 (1976)CrossRefMATHGoogle Scholar
  22. 22.
    Kuz’mina, R.P.: On an upper bound for the number of central configurations in the planar n-body problem. Sov. Math. Dokl. 18, 818–821 (1977)MATHGoogle Scholar
  23. 23.
    Lagrange, J.L.: Essai sur le problème des trois corps. OEuvres, vol. 6 (1772)Google Scholar
  24. 24.
    Lefschetz, S.: Algebraic Geometry, Princeton: Princeton University Press 1953Google Scholar
  25. 25.
    Lehmann-Filhés, R.: Über zwei Fälle des Vielkörpersproblems. Astron. Nachr. 127, 137–143 (1891)Google Scholar
  26. 26.
    Llibre, J.: On the number of central configurations in the N-body problem. Celest. Mech. Dyn. Astron. 50, 89–96 (1991)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    MacDuffee, C.C.: Theory of Matrices. New York: Chelsea Publishing Co. 1946Google Scholar
  28. 28.
    MacMillan, W.D., Bartky, W.: Permanent configurations in the problem of four bodies. Trans. Am. Math. Soc. 34, 838–875 (1932)CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    McCord, C.K.: Planar central configuration estimates in the n-body problem. Ergodic Theory Dyn. Syst. 16, 1059–1070 (1996)MATHMathSciNetGoogle Scholar
  30. 30.
    McCord, C.K., Meyer, K.R., Wang, Q.: The integral manifolds of the three body problem. Providence, RI: Am. Math. Soc. 1998Google Scholar
  31. 31.
    Moeckel, R.: Relative equilibria of the four-body problem. Ergodic Theory Dyn. Syst. 5, 417–435 (1985)MATHMathSciNetCrossRefGoogle Scholar
  32. 32.
    Moeckel, R.: On central configurations. Math. Z. 205, 499–517 (1990)MATHMathSciNetGoogle Scholar
  33. 33.
    Moeckel, R.: Generic Finiteness for Dziobek Configurations. Trans. Am. Math. Soc. 353, 4673–4686 (2001)CrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    Moeckel, R.: A Computer Assisted Proof of Saari’s Conjecture for the Planar Three-Body Problem. To appear in Trans. Am. Math. Soc.Google Scholar
  35. 35.
    Moulton, F.R.: The Straight Line Solutions of the Problem of n Bodies. Ann. Math. 12, 1–17 (1910)CrossRefMATHMathSciNetGoogle Scholar
  36. 36.
    Motzkin, T.S., Raiffa, H., Thompson, G.L., Thrall, R.M.: The double description method. Ann. Math. Stud. 28, 51–73 (1953)MATHMathSciNetGoogle Scholar
  37. 37.
    Newton, I.: Philosophi naturalis principia mathematica. London: Royal Society 1687Google Scholar
  38. 38.
    Roberts, G.: A continuum of relative equilibria in the five-body problem. Phys. D 127, 141–145 (1999)CrossRefMATHMathSciNetGoogle Scholar
  39. 39.
    Saari, D.: On the Role and Properties of n-body Central Configurations. Celest. Mech. 21, 9–20 (1980)CrossRefMATHMathSciNetGoogle Scholar
  40. 40.
    Shafarevich, I.R.: Basic Algebraic Geometry 1, Varieties in Projective Space. Berlin, Heidelberg, New York: Springer 1994Google Scholar
  41. 41.
    Simó, C.: Relative equilibria in the four-body problem. Celest. Mech. 18, 165–184 (1978)CrossRefMATHGoogle Scholar
  42. 42.
    Smale, S.: Topology and Mechanics, II, The planar n-body problem. Invent. Math. 11, 45–64 (1970)CrossRefMATHMathSciNetGoogle Scholar
  43. 43.
    Smale, S.: Mathematical problems for the next century. Math. Intell. 20, 7–15 (1998)MATHMathSciNetCrossRefGoogle Scholar
  44. 44.
    Tien, F.: Recursion Formulas of Central Configurations. Thesis, University of Minnesota 1993Google Scholar
  45. 45.
    Walker, R.: Algebraic Curves. New York: Dover Publications, Inc. 1962Google Scholar
  46. 46.
    Wintner, A.: The Analytical Foundations of Celestial Mechanics. Princeton Math. Series 5. Princeton, NJ: Princeton University Press 1941Google Scholar
  47. 47.
    Wolfram, S.: Mathematica, version 5.0.1.0. Wolfram Research, Inc.Google Scholar
  48. 48.
    Xia, Z.: Central configurations with many small masses. J. Differ. Equations 91, 168–179 (1991)CrossRefMATHGoogle Scholar
  49. 49.
    Xia, Z.: Central configurations for the four-body and five-body problems. PreprintGoogle Scholar
  50. 50.
    Zeigler, G.: Lectures on Polytopes. Grad. Texts Math. 152. New York: Springer 1995Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.School of MathematicsUniversity of MinnesotaMinneapolisUSA

Personalised recommendations