Skip to main content
Log in

F-singularities of pairs and Inversion of Adjunction of arbitrary codimension

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We generalize the notions of F-regular and F-pure rings to pairs \((R,\mathfrak{a}^t)\) of rings R and ideals \(\mathfrak{a} \subset{R}\) with real exponent t>0, and investigate these properties. These “F-singularities of pairs” correspond to singularities of pairs of arbitrary codimension in birational geometry. Via this correspondence, we prove a sort of Inversion of Adjunction of arbitrary codimension, which states that for a pair (X,Y) of a smooth variety X and a closed subscheme \(Y\subsetneq{X}\), if the restriction (Z,Y| Z ) to a normal ℚ-Gorenstein closed subvariety \(Z\subsetneq{X}\) is klt (resp. lc), then the pair (X,Y+Z) is plt (resp. lc) near Z.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aberbach, I., MacCrimmon, B.: Some results on test elements. Proc. Edinb. Math. Soc., II. Ser. 42, 541–549 (1999)

    Article  MathSciNet  Google Scholar 

  2. Ambro, F.: Inversion of Adjunction for non-degenerate hypersurfaces. Manuscr. Math. 111, 43–49 (2003)

    Article  MathSciNet  Google Scholar 

  3. Ein, L., Mustaţa, M.: Inversion of Adjunction for locally complete intersection varieties. arXiv:math.AG/0301164. To appear in Am. J. Math.

  4. Ein, L., Mustaţa, M., Yasuda, T.: Jet schemes, log discrepancies and Inversion of Adjunction. Invent. Math. 153, 519–535 (2003)

    Article  MathSciNet  Google Scholar 

  5. Fedder, R.: F-purity and rational singularity. Trans. Am. Math. Soc. 278, 461–480 (1983)

    MathSciNet  Google Scholar 

  6. Glassbrenner, D.: Strong F-regularity in images of regular rings. Proc. Am. Math. Soc. 124, 345–353 (1996)

    Article  MathSciNet  Google Scholar 

  7. Hara, N.: A characterization of rational singularities in terms of injectivity of Frobenius maps. Am. J. Math. 120, 981–996 (1998)

    Article  Google Scholar 

  8. Hara, N.: Geometric interpretation of tight closure and test ideals. Trans. Am. Math. Soc. 353, 1885–1906 (2001)

    Article  Google Scholar 

  9. Hara, N., Takagi, S.: On a generalization of test ideals. arXiv: math.AC/0210131. To appear in Nagoya Math. J.

  10. Hara, N., Watanabe, K.-i.: F-regular and F-pure rings vs. log terminal and log canonical singularities. J. Algebr. Geom. 11, 363–392 (2002)

    Google Scholar 

  11. Hara, N., Watanabe, K.-i., Yoshida, K.: Rees algebras of F-regular type. J. Algebra 247, 191–218 (2002)

    Article  MathSciNet  Google Scholar 

  12. Hara, N., Yoshida, Y.: A generalization of tight closure and multiplier ideals. Trans. Am. Math. Soc. 355, 3143–3174 (2003)

    Article  Google Scholar 

  13. Hironaka, H.: Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II. Ann. Math. (2) 79, 109–203 (1964); ibid. (2) 79, 205–326 (1964)

  14. Hochster, M., Huneke, C.: Tight closure, invariant theory and the Briançon-Skoda theorem. J. Am. Math. Soc. 3, 31–116 (1990)

    MathSciNet  Google Scholar 

  15. Hochster, M., Huneke, C.: Tight closure and strong F-regularity. Colloque en l’honneur de Pierre Samuel (Orsay, 1987). Mém. Soc. Math. Fr., Nouv. Sér. 38, 119–133 (1989)

  16. Hochster, M., Roberts, J.: The purity of the Frobenius and local cohomology. Adv. Math. 21, 117–172 (1976)

    Article  MathSciNet  Google Scholar 

  17. Kollár, J.: Singularities of pairs. Algebraic geometry—Santa Cruz 1995, 221–287. Proc. Symp. Pure Math. 62, Part 1. Providence, RI: Amer. Math. Soc. 1997

  18. Kollár, J. (with 14 coauthors): Flips and abundance for algebraic threefolds. Astérisque 211 (1992)

  19. Kunz, E.: Characterizations of regular local rings of characteristic p. Am. J. Math. 91, 772–784 (1969)

    Article  MathSciNet  Google Scholar 

  20. Lazarsfeld, R.: Positivity in Algebraic Geometry. In preparation

  21. Mehta, V.B., Srinivas. V.: A characterization of rational singularities. Asian J. Math. 1, 249–271 (1997)

    Article  MathSciNet  Google Scholar 

  22. Nakayama, N.: Zariski-decomposition and abundance. RIMS preprint series 1142 (1997)

  23. Shokurov, V.V.: 3-fold log flips. Izv. Ross. Akad. Nauk, Ser. Mat. 56, 105–203 (1992)

    Google Scholar 

  24. Smith, K.E.: F-rational rings have rational singularities. Am. J. Math. 119, 159–180 (1997)

    Article  Google Scholar 

  25. Smith, K.E.: The multiplier ideal is a universal test ideal. Commun. Algebra 28, 5915–5929 (2000)

    Article  Google Scholar 

  26. Smith, K.E.: Globally F-regular varieties: applications to vanishing theorems for quotients of Fano varieties. Mich. Math. J. 48, 553–572 (2000)

    Article  Google Scholar 

  27. Takagi, S.: An interpretation of multiplier ideals via tight closure. J. Algebr. Geom. 13, 393–415 (2004)

    Article  Google Scholar 

  28. Takagi, S., Watanabe, K.-i.: On F-pure thresholds. arXiv: math.AC/0312486. Submitted

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunsuke Takagi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takagi, S. F-singularities of pairs and Inversion of Adjunction of arbitrary codimension. Invent. math. 157, 123–146 (2004). https://doi.org/10.1007/s00222-003-0350-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-003-0350-3

Keywords

Navigation