Skip to main content
Log in

The geometric complexity of special Lagrangian T 2-cones

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We prove a number of results on the geometric complexity of special Lagrangian (SLG) T 2-cones in ℂ3. Every SLG T 2-cone has a fundamental integer invariant, its spectral curve genus. We prove that the spectral curve genus of an SLG T 2-cone gives a lower bound for its geometric complexity, i.e. the area, the stability index and the Legendrian index of any SLG T 2-cone are all bounded below by explicit linearly growing functions of the spectral curve genus. We prove that the cone on the Clifford torus (which has spectral curve genus zero) in S 5 is the unique SLG T 2-cone with the smallest possible Legendrian index and hence that it is the unique stable SLG T 2-cone. This leads to a classification of all rigid “index 1” SLG cone types in dimension three. For cones with spectral curve genus two we give refined lower bounds for the area, the Legendrian index and the stability index. One consequence of these bounds is that there exist S 1-invariant SLG torus cones of arbitrarily large area, Legendrian and stability indices. We explain some consequences of our results for the programme (due to Joyce) to understand the “most common” three-dimensional isolated singularities of generic families of SLG submanifolds in almost Calabi-Yau manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Becker, K., Becker, M., Strominger, A.: Fivebranes, membranes and non-perturbative string theory. Nucl. Phys. B 456, 130–152 (1995)

    Article  Google Scholar 

  2. Bérard, P., Meyer, D.: Inégalités isopérimétriques et applications. Ann. Sci. Éc. Norm. Supér., IV. Sér. 15, 513–541 (1982)

    Google Scholar 

  3. Besson, G.: Sur la multiplicité de la première valeur propre des surfaces riemanniennes. Ann. Inst. Fourier (Grenoble) 30, 109–128 (1980)

    Article  MathSciNet  Google Scholar 

  4. Boyer, C., Galicki, K.: 3-Sasakian manifolds. In: Surveys in differential geometry: essays on Einstein manifolds. Surv. Differ. Geom., VI, pp. 123–184. Boston, MA: Int. Press 1999

  5. Bryant, R.: Second order families of special Lagrangian 3-folds. arXiv:math.DG/0007128 (2000)

  6. Burstall, F.E., Ferus, D., Pedit, F., Pinkall, U.: Harmonic tori in symmetric spaces and commuting Hamiltonian systems on loop algebras. Ann. Math. (2) 138, 173–212 (1993)

  7. Cao, H.-D., Shen, Y., Zhu, S.: The structure of stable minimal hypersurfaces in R n+1. Math. Res. Lett. 4, 637–644 (1997)

    Article  MathSciNet  Google Scholar 

  8. Carberry, E., McIntosh, I.: Minimal Lagrangian 2-tori in ℂℙ2 come in real families of every dimension. To appear in J. Lond. Math. Soc., arXiv:math.DG/0308031 (2003)

  9. Castro, I., Urbano, F.: New examples of minimal Lagrangian tori in the complex projective plane. Manuscr. Math. 85, 265–281 (1994)

    Article  Google Scholar 

  10. Castro, I., Urbano, F.: On a minimal Lagrangian submanifold of ℂn foliated by spheres. Mich. Math. J. 46, 71–82 (1999)

    Article  Google Scholar 

  11. Cheng, S.Y.: Eigenfunctions and nodal sets. Comment. Math. Helv. 51, 43–55 (1976)

    Article  MathSciNet  Google Scholar 

  12. Cheng, S.Y., Li, P., Yau, S.-T.: Heat equations on minimal submanifolds and their applications. Am. J. Math. 106, 1033–1065 (1984)

    Article  Google Scholar 

  13. Colin de Verdière, Y.: Construction de laplaciens dont une partie finie du spectre est donnée. Ann. Sci. Éc. Norm. Supér., IV. Sér. 20, 599–615 (1987)

    Google Scholar 

  14. El Soufi, A., Ilias, S.: Immersions minimales, première valeur propre du laplacien et volume conforme. Math. Ann. 275, 257–267 (1986)

    Article  MathSciNet  Google Scholar 

  15. Ferus, D., Leschke, K., Pedit, F., Pinkall, U.: Quaternionic holomorphic geometry: Plücker formula, Dirac eigenvalue estimates and energy estimates of harmonic 2-tori. Invent. Math. 146, 507–593 (2001)

    Article  MathSciNet  Google Scholar 

  16. Fu, L.: On the boundaries of special Lagrangian submanifolds. Duke Math. J. 79, 405–422 (1995)

    Article  MathSciNet  Google Scholar 

  17. Gallot, S., Hulin, D., Lafontaine, J.: Riemannian geometry. Second edn., Universitext. Berlin: Springer 1990

  18. Goldstein, E.: Calibrated fibrations. Commun. Anal. Geom. 10, 127–150 (2002)

    Article  Google Scholar 

  19. Hardt, R., Simon, L.: Nodal sets for solutions of elliptic equations. J. Differ. Geom. 30, 505–522 (1989)

    MathSciNet  Google Scholar 

  20. Harvey, R., Lawson Jr., H.B.: Calibrated geometries. Acta Math. 148, 47–157 (1982)

    Article  MathSciNet  Google Scholar 

  21. Haskins, M.: Special Lagrangian Cones. To appear in Am. J. Math. 126. arXiv:math.DG/0005164 (2004)

  22. Haskins, M.: Constructing Special Lagrangian Cones. PhD thesis, University of Texas at Austin 2000

  23. Hitchin, N.J.: Harmonic maps from a 2-torus to the 3-sphere. J. Differ. Geom. 31, 627–710 (1990)

    MathSciNet  Google Scholar 

  24. Joyce, D.: Lectures on on Calabi-Yau and special Lagrangian geometry. arXiv:math.DG/0108088 (2001)

  25. Joyce, D.: Special Lagrangian 3-folds and integrable systems. To appear in Proc. Math. Soc. Japan’s 9th International Research Institute on ‘Integrable Systems in Differential Geometry’, Tokyo, 2000. arXiv:math.DG/0101249 (2001)

  26. Joyce, D.: Special Lagrangian submanifolds with isolated conical singularities. I. Regularity. To appear in Ann. Global Anal. Geom., arXiv:math.DG/0211294 (2002)

  27. Joyce, D.: Special Lagrangian submanifolds with isolated conical singularities. II. Moduli spaces. To appear in Ann. Global Anal. Geom., arXiv:math.DG/0211295 (2002)

  28. Joyce, D.: Special Lagrangian submanifolds with isolated conical singularities. III. Desingularization, the unobstructed case. To appear in Ann. Global Anal. Geom., arXiv:math.DG/0302355 (2003)

  29. Joyce, D.: Special Lagrangian submanifolds with isolated conical singularities. IV. Desingularization, obstructions and families. To appear in Ann. Global Anal. Geom., arXiv:math.DG/0302356 (2003)

  30. Joyce, D.: Special Lagrangian submanifolds with isolated conical singularities. V. Survey and applications. J. Differ. Geom. 63, 279–347 (2003)

    MathSciNet  Google Scholar 

  31. Joyce, D.: On counting special Lagrangian homology 3-spheres. In: Topology and geometry: commemorating SISTAG, volume 314 of Contemp. Math., pp. 125–151. Providence, RI: Am. Math. Soc. 2002

  32. Joyce, D.: Special Lagrangian m-folds in ℂm with symmetries. Duke Math. J. 115, 1–51 (2002)

    Article  MathSciNet  Google Scholar 

  33. Lawden, D.F.: Elliptic functions and applications, volume 80 of Applied Mathematical Sciences. New York: Springer 1989

  34. Li, P., Yau, S.T.: A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces. Invent. Math. 69, 269–291 (1982)

    Article  MathSciNet  Google Scholar 

  35. Lockhart, R.: Fredholm, Hodge and Liouville theorems on noncompact manifolds. Trans. Am. Math. Soc. 301, 1–35 (1987)

    Article  MathSciNet  Google Scholar 

  36. Lockhart, R.B., McOwen, R.C.: Elliptic differential operators on noncompact manifolds. Ann. Sc. Norm. Supèr. Pisa, Cl. Sci., IV. Ser. 12, 409–447 (1985)

    MathSciNet  Google Scholar 

  37. Marshall, S.: Deformations of special Lagrangian submanifolds. PhD thesis, Oxford University 2002

  38. McDuff, D., Salamon, D.: Introduction to symplectic topology. Second edn., Oxford Mathematical Monographs. New York: The Clarendon Press, Oxford University Press 1998

  39. McIntosh, I.: A construction of all non-isotropic harmonic tori in complex projective space. Int. J. Math. 6, 831–879 (1995)

    Article  MathSciNet  Google Scholar 

  40. McIntosh, I.: Two remarks on the construction of harmonic tori in CPn. Int. J. Math. 7, 515–520 (1996)

    Article  MathSciNet  Google Scholar 

  41. McIntosh, I.: On the existence of superconformal 2-tori and doubly periodic affine Toda fields. J. Geom. Phys. 24, 223–243 (1998)

    Article  MathSciNet  Google Scholar 

  42. McIntosh, I.: Special Lagrangian cones in ℂ3 and primitive harmonic maps. J. Lond. Math. Soc. (3) 67, 769–789 (2003)

  43. Montiel, S., Ros, A.: Minimal immersions of surfaces by the first eigenfunctions and conformal area. Invent. Math. 83, 153–166 (1985)

    Article  MathSciNet  Google Scholar 

  44. Nadirashvili, N.S.: Multiple eigenvalues of the Laplace operator. Mat. Sb. 133(175), 223–237, 272 (1987)

    Google Scholar 

  45. Oh, Y.-G.: Second variation and stabilities of minimal Lagrangian submanifolds in Kähler manifolds. Invent. Math. 101, 501–519 (1990)

    Article  MathSciNet  Google Scholar 

  46. Pacini, T.: Deformations of Asymptotically Conical Special Lagrangian Submanifolds. PhD thesis, Pisa 2002

  47. Pinkall, U., Sterling, I.: On the classification of constant mean curvature tori. Ann. Math. (2) 130, 407–451 (1989)

  48. Schoen, R., Yau, S.-T.: Lectures on differential geometry. Conference Proceedings and Lecture Notes in Geometry and Topology, I. Cambridge, MA: International Press 1994

  49. Strominger, A., Yau, S., Zaslow, E.: Mirror symmetry is T-duality. Nucl. Phys. B 479, 243–259 (1996)

    Article  MathSciNet  Google Scholar 

  50. Urakawa, H.: On the least positive eigenvalue of the Laplacian for compact group manifolds. J. Math. Soc. Japan 31, 209–226 (1979)

    Article  MathSciNet  Google Scholar 

  51. Urbano, F.: Index of Lagrangian submanifolds of CPn and the Laplacian of 1-forms. Geom. Dedicata 48, 309–318 (1993)

    Article  MathSciNet  Google Scholar 

  52. Weinstein, A.: Symplectic manifolds and their Lagrangian submanifolds. Adv. Math. 6, 329–346 (1971)

    Article  Google Scholar 

  53. Yang, P.C., Yau, S.T.: Eigenvalues of the Laplacian of compact Riemann surfaces and minimal submanifolds. Ann. Sci. Éc. Norm. Supér., IV. Sér. 7, 55–63 (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Mathematics Subject Classification (1991)

53C38, 53C43

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haskins, M. The geometric complexity of special Lagrangian T 2-cones. Invent. math. 157, 11–70 (2004). https://doi.org/10.1007/s00222-003-0348-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-003-0348-x

Keywords

Navigation