Abstract
This paper proves that there exist 3n Steiner symmetrizations that transform any convex set K⊂ℝn into an isomorphic Euclidean ball; i.e. if vol(K)=vol(D n ) where D n is the standard Euclidean unit ball, then K can be transformed into a body K such that c 1 D n ⊂K⊂c 2 D n , where c 1,c 2 are numerical constants. Moreover, for any c>2, cn symmetrizations are also enough.
This is a preview of subscription content, access via your institution.
References
Ball, K.M.: An Elementary Introduction to Modern Convex Geometry. Appeared in Flavors of Geometry, S. Levy (ed.), MSRI vol. 31. Cambridge Univ. Press 1997
Blaschke, W.: Über affine Geometrie XIV: Eine Minimumaufgabe für Legendres Trägheitsellipsoid. Ber. Verh. Sächs. Ges. Wiss. Leipzig, Math.-Phys. Kl. 70, 72–75 (1918); Ges. Werke, Band 3, pp. 307–310, Essen: Thales 1985
Brunn, H.: Über Ovale und Eiflächen. Dissertation, München 1887
Brunn, H.: Referat über eine Arbeit: Exacte Grundlagen für eine Theorie der Ovale. Sitzungsber., Bayer. Akad. Wiss., Math.-Phys. Kl. 24, 93–111 (1894)
Bonnesen, T., Fenchel, W.: Theorie der konvexen Körper. Berlin: Springer 1934; English transl. Theory of convex bodies, BCS associates 1987
Bourgain, J., Klartag, B., Milman, V.D.: A reduction of the slicing problem to finite volume ratio bodies. C. R. Acad. Sci. Paris, Ser. I 336, 331–334 (2003)
Bobkov, S.G., Nazarov, F.L.: On convex bodies and log-concave probability measures with unconditional bodies. Geometric aspects of functional analysis (2001–2002). Lect. Notes Math., vol. 1807, pp. 53–69. Berlin: Springer 2003
Bourgain, J., Lindenstrauss, J., Milman, V.D.: Estimates related to Steiner symmetrizations. Geometric aspects of functional analysis (1987–88). Lect. Notes Math., vol. 1376, pp. 264–273. Berlin: Springer 1989
Burago, Yu.D., Zalgaller, V.A.: Geometric inequalities. Springer Ser. Sov. Math. Berlin: Springer 1988
Caratheodory, C., Study, E.: Zwei Beweise des Satzes, dass der Kreis unter allen Figuren gleichen Umfanges den grössten Inhalt hat. Math. Ann. 68, 133–140 (1910)
Garnaev, A.Yu., Gluskin, E.D.: The widths of a Euclidean ball. Dokl. Akad. Nauk SSSR 277, 1048–1052 (1984); English transl. in Sov. Math. Dokl. 30 (1984)
Giannopoulos, A.A., Milman, V.D.: Euclidean structures in finite dimensional normed spaces. Handbook of the Geometry of Banach spaces, Vol. 1, pp. 707–779, W.B. Johnson, J. Lindenstrauss (eds.). Elsevier Science 2001
Hadwiger, H.: Einfache Herleitung der isoperimetrischen Ungleichung für abgeschlossene Punktmengen. Math. Ann. 124, 158–160 (1952)
Klartag, B.: 5n Minkowski symmetrizations suffice to arrive at an approximate Euclidean ball. Ann. Math. 156, 947–960 (2002)
Kashin, B.S.: Diameters of some finite-dimensional sets and classes of smooth functions. Izv. Akad. Nauk SSSR, Ser. Mat. Tom 41, 334–351 (1977); English transl. in Math. USSR Izv. 11, 317–333 (1977)
Macbeath, A.M.: An extremal property of the hypersphere. Proc. Camb. Philos. Soc. 47, 245–247 (1951)
Mani-Levitska, P.: Random Steiner symmetrizations. Stud. Sci. Math. Hung. 21, 373–378 (1986)
Meyer, M., Pajor, A.: On the Blaschke-Santalo inequaqlity. Arch. Math. 55, 82–93 (1990)
Meyer, M., Pajor, A.: Sections of the Unit Ball of l p n. J. Funct. Anal. 80, 109–123 (1988)
Milman, V.D.: Almost Euclidean qoutient spaces of subspaces of a finite dimensional normed space. Proc. Am. Math. Soc. 94, 445–449 (1985)
Milman, V.D., Pajor, A.: Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space. Geometric aspects of functional analysis (1987–88). Lect. Notes Math., vol. 1376, pp. 64–104. Berlin: Springer 1989
Milman, V.D., Pajor, A.: Entropy and Asymptotic Geometry of Non-Symmetric Convex Bodies. Adv. Math. 152, 314–335 (2000)
Milman, V.D., Schechtman, G.: Asymptotic theory of finite-dimensional normed spaces. Lect. Notes Math., vol. 1200. Berlin: Springer 1986
Pisier, G.: The volume of convex bodies and Banach space geometry. Camb. Tracts Math., vol. 94. Cambridge Univ. Press 1997
Schneider, R.: Convex bodies: The Brunn-Minkowski theory. Encyclopedia of Mathematics and its Applications, vol. 44. Cambridge Univ. Press 1993
Steiner, J.: Einfacher Beweis der isoperimetrischen Hauptsätze. Crelle J. Reine Angew. Math. 18, 281–296 (1838); Ges. Werke 2, G. Reimer, Berlin, 77–91 (1882), reprint bei Chelsea, Bronx, NY (1972)
Vaaler, J.D.: A geometric inequality with applications to linear forms. Pac. J. Math. 83, 543–553 (1979)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Klartag, B., Milman, V. Isomorphic Steiner symmetrization. Invent. math. 153, 463–485 (2003). https://doi.org/10.1007/s00222-003-0290-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00222-003-0290-y