Conscious and preconscious adaptation to rhythmic auditory stimuli: a magnetoencephalographic study of human brain responses

Abstract

This study was triggered by the experimental evidence that subjects required to tap in synchrony with a heard rhythm spontaneously time their tapping to variations in rhythm frequency even when these variations are so small that they are not consciously detectable. We performed a series of magnetoencephalographic (MEG) measurements, aimed at investigating whether the response of the auditory cortex discriminates randomly administered series of brief tones differing from each other only by their interstimulus intervals (ISI). Moreover, by combining psychophysical measurements, conscious and preconscious adjustments of tapping to rhythm variations were compared with brain cortical responses. The ISIs were varied by 2% or 20% from a “central” value of 500 ms. Subjects always consciously detected the 20% ISI changes and easily adjusted their tapping accordingly, whereas they never consciously detected the 2% ISI changes, even though they always correctly adjusted their tapping to them. Analysis of the auditory evoked fields (AEFs) showed that the intensity of the M100 component decreased with decreasing ISI both for 20% and 2% variations in a statistically significant manner, despite the fact that the 2% variation was not consciously perceived. The M100 behavior indicated that connections between auditory and motor cortexes may exist that are able to use the information on rhythm variations in the stimuli even when these are not consciously identified by the subject. The ability of the auditory cortex to discriminate different time characteristics of the incoming rhythmic stimuli is discussed in this paper in relation to the theories regarding the physiology of time perception and discrimination.

This is a preview of subscription content, access via your institution.

References

  1. Berman IW (1981) Musical functioning, speech lateralization and the amusias. S Afr Med J 59:78–81

    PubMed  CAS  Google Scholar 

  2. Buonomano DV (2000) Decoding temporal information: a model based on short-term synaptic plasticity. J Neurosci 20:1129–1141

    PubMed  CAS  Google Scholar 

  3. Buonomano DV, Merzenich MM (1995) Temporal information transformed into a spatial code by a neural network with realistic properties. Science 267:1028–1030

    PubMed  Article  CAS  Google Scholar 

  4. Buonomano DV, Hickmott PW, Merzenich MM (1997) Context-sensitive synaptic plasticity and temporal-to-spatial transformations in hippocampal slices. Proc Natl Acad Sci USA 94:10403–10408

    PubMed  Article  CAS  Google Scholar 

  5. Collyer CE, Broadbent HA, Church RM (1992) Categorical time production: evidence for discrete timing in motor control. Percept Psychophys 51:134–144

    PubMed  CAS  Google Scholar 

  6. Cowan N (1984) On short and long auditory stores. Psychol Bull 96:341–370

    PubMed  Article  CAS  Google Scholar 

  7. Dawe LA, Piatt JR, Racine RJ (1995) Rhythm perception and differences in accent weights for musicians and non-musicians. Percept Psychophys 57:905–914

    PubMed  CAS  Google Scholar 

  8. Elberling C, Bak C, Kofoed B, Lebech J, Saermark K (1982) Auditory magnetic fields from the human cerebral cortex: location and strength of an equivalent current dipole. Acta Neurol Scand 65:553–569

    PubMed  Article  CAS  Google Scholar 

  9. Ernè SN, Narici L, Pizzella V, Romani GL (1987) The position problem in biomagnetic measurement: a solution for arrays of superconducting sensors IEEE Trans Magn 23:1319–1322

    Article  Google Scholar 

  10. Fitzgibbons PJ, Pollatsek A, Thomas IB (1974) Detection of temporal gaps within and between perceptual tonal groups. Percept Psychophys 16:522–528

    Google Scholar 

  11. Franek M, Mates J, Radii T, Beck K, Poppel E (1994) Sensorimotor synchronization: motor responses to pseudoregular auditory patterns. Percept Psychophys 55:204–217

    PubMed  CAS  Google Scholar 

  12. Fries W (1990) Disturbance of rhythm sense following right hemisphere damage. Neuropsychologia 28:1317–1323

    PubMed  Article  CAS  Google Scholar 

  13. Gallen C, Pantev C, Hampson S, Buchanan DS, Sobel D (1992) Reliability and validity of auditory neuromagnetic source localization using a large array biomagnetometer. In: Hoke M, Ernè SN, Okada YC, Romani GL (eds) Biomagnetism: clinical aspects. Excerpta Medica, Amsterdam, pp 171–175

    Google Scholar 

  14. Hari R, Aittoniemi K, Jarvinen ML, Katila T, Varpula T (1980) Auditory evoked transient and sustained magnetic fields of the human brain: localization of neural generators. Exp Brain Res 40:237–240

    PubMed  Article  CAS  Google Scholar 

  15. Hari R, Kaila K, Kaila T, Tuomitso T, Varpula T (1982) Interstimulus dependence of the auditory vertex response and its magnetic counterpart: implications for their neural generation. Electroencephalogr Clin Neurophysiol 54:561–569

    PubMed  Article  CAS  Google Scholar 

  16. Hari R, Pelizzone M, Makela PJ, Hallstrom J, Leinonen L, Lounasmaa OV (1987) Neuromagnetic responses of the human auditory cortex to on- and offsets to noise bursts Audiology 26:31–43

    PubMed  Article  CAS  Google Scholar 

  17. Hari R, Joutsiniemi SL, Hamalainen M, Vilkman V (1989) Neuromagnetic responses of human auditory cortex to interruptions in a steady rhythm. Neurosci Lett 99:164–168

    PubMed  Article  CAS  Google Scholar 

  18. Imada T, Watanabe M, Mashiko T, Kawakatsu M, Kotani M (1997) The silent period between sounds has a stronger effect than the interstimulus interval on auditory evoked magnetic fields. Electroencephalogr Clin Neurophysiol 102:37–45

    PubMed  Article  CAS  Google Scholar 

  19. Ivry RB, Keele SW (1989) Timing functions of the cerebellum. J Cogn Neurosci 1:134–150

    Article  Google Scholar 

  20. Joutsiniemi SL, Hari R (1989) Omissions of auditory stimuli may activate frontal cortex. Eur J Neurosci 1:524–528

    PubMed  Article  Google Scholar 

  21. Kagerer F, Ilmberger J, Poppel E, Mates J, Radii T (1990) Auditory motor synchronization: timing in incremental and decremental rhythmic tapping. Act Nerv Super 32:145–146

    CAS  Google Scholar 

  22. Kraus N, Smith DI, McGee T (1988) Midline and temporal lobe MLRs in the guinea pig originate from different generator systems: a conceptual framework for new and existing data. Electroencephalogr Clin Neurophysiol 70:541–558

    PubMed  Article  CAS  Google Scholar 

  23. Lang W, Obrig H, Lindinger G, Cheyne D, Deeke L (1990) Supplementary motor area activation while tapping bimanually different rhythms in musicians. Exp Brain Res 79:504–514

    PubMed  Article  CAS  Google Scholar 

  24. Levanen S, Ahonen A, Hari R, McEvoy L, Sams M (1996) Deviant auditory stimuli activate human left and right auditory cortex differently. Cereb Cortex 6:288–96

    PubMed  Article  CAS  Google Scholar 

  25. Lu ZL, Williamson SJ, Kaufman L (1992a) Human auditory primary and association cortex have different lifetimes for activation traces. Brain Res 572:236–241

    PubMed  Article  CAS  Google Scholar 

  26. Lu ZL, Williamson SJ, Kaufman L (1992b) Behavioral lifetime of human auditory sensory memory predicted by physiological measures. Science 258:1668–1670

    PubMed  Article  CAS  Google Scholar 

  27. Makela JP, Hari R, Linnankivi A (1987) Different analysis of frequency and amplitude modulations of a continuous tone in the human auditory cortex: a neuromagnetic study. Hearing Res 27:257–264

    Article  CAS  Google Scholar 

  28. Mayville JM, Bressler SL, Fuchs A, Kelso JA (1999) Spatiotemporal reorganization of electrical activity in the human brain associated with a timing transition in rhythmic auditory-motor coordination. Exp Brain Res 127:371–81

    PubMed  Article  CAS  Google Scholar 

  29. Meek WH, Church RM (1987) Nutrients modify the speed of internal clock and memory stages processes. Behav Neurosci 101:465–475

    Article  Google Scholar 

  30. Melvill Jones G, Watt DGD (1971) Observations on the control of stepping and hopping movements in man. J Physiol (Lond) 219:709–727

    Google Scholar 

  31. Miller RA, Thaut MH, Aunon JI (1994) Event related brain wave potentials in an auditory-motor synchronization task. In: Pratt RR, Spintge R (eds) Music medicine. MMB Music, St Louis, pp 76–84

    Google Scholar 

  32. Monahan CB, Hirsh IJ (1990) Studies in auditory timing. 2. Rhythm patterns. Percept Psychophys 47:227–242

    PubMed  CAS  Google Scholar 

  33. Pantev C, Hoke M, Luntkenhoner B, Fahrendorf G, Stober U (1990) Identification of sources of brain neuronal activity with high spatiotemporal resolution through combination of neuromagnetic source localization (NMSL) and magnetic resonance imaging (MRI). Electroencephalogr Clin Neurophysiol 75:173–184

    PubMed  Article  CAS  Google Scholar 

  34. Pantev C, Elbert T, Makeig S, Hampson S, Eulitz C, Hoke M (1993) Relationship of transient and steady-state auditory evoked fields. Electroencephalogr Clin Neurophysiol 88:389–396

    PubMed  Article  CAS  Google Scholar 

  35. Papanicolau AC, Banmann S (1990) Localization of auditory responses sources using MEG and MRI. Arch Neurol 47:33

    Google Scholar 

  36. Pellizzone M, Hari R, Makela JP, Huttunen J, Ahlfors S, Hamalainen M (1987) Cortical origin of the middle latency auditory evoked responses in man. Neurosci Lett 82:303–307

    Article  Google Scholar 

  37. Povel DJ, Essen P (1985) Perception of temporal patterns. Music Percept 2:411–440

    Google Scholar 

  38. Rao SM, Harrington DL, Haaland KY, Bobholz JA, Cox RW, Binder JR (1997) Distributed neural systems underlying the timing of movements. J Neurosci 17:5528–5535

    PubMed  CAS  Google Scholar 

  39. Reite M, Edrich J, Zimmerman JT, Zimmerman JE (1978) Human magnetic auditory evoked fields. Electroencephalogr Clin Neurophysiol 45:114–117

    PubMed  Article  CAS  Google Scholar 

  40. Romani GL, Williamson SJ, Kaufmann L (1982) Tonotopic organization of the human auditory cortex. Science 216:1339–1340

    PubMed  Article  CAS  Google Scholar 

  41. Ross J, Houtsma AJM (1994) Discrimination of auditory temporal patterns. Percept Psychophys 56:19–26

    PubMed  CAS  Google Scholar 

  42. Rossignol S, Melvill Jones G (1976) Audio-spinal influence in man studied by the H-reflex and its possible role on rhythmic movements synchronized to sound. Electroencephalogr Clin Neurophysiol 41:83–92

    PubMed  Article  CAS  Google Scholar 

  43. Sams M, Kaukoranta E, Hamalainen M, Naatanen R (1991) Cortical activity elicited by changes in auditory stimuli. Psychophysiology 28:21–28

    PubMed  Article  CAS  Google Scholar 

  44. Sams M, Hari R, Rif J, Knutila J (1993) The human auditory sensory memory trace persists about 10 s: neuromagnetic evidence. J Cogn Neurosci 5:363–370

    Article  Google Scholar 

  45. Tecchio F, Rossini PM, Pizzella V, Cassetta E, Romani G-L (1997) Spatial properties and interhemispheric differences of the sensory hand cortical representation: a neuromagnetic study. Brain Res 767:100–108

    PubMed  Article  CAS  Google Scholar 

  46. Thaut MH, Miller RA, Schauer ML (1998) Multiple synchronization strategies in rhythmic sensorimotor tasks: phase vs period corrections. Biol Cybern 79:241–250

    PubMed  Article  CAS  Google Scholar 

  47. Treisman M, Cook N, Naish PLN, MacCrone JK (1994) The internal clock: electroencephalographic evidence for oscillatory time perception. Q J Exp Psychol A 47:241–289

    PubMed  CAS  Google Scholar 

  48. Vos PG, Mates J, Kruysbergen NW (1995) The perceptual centre of a stimulus as the cue for synchronization to a metronome: evidence from asynchronies. Q J Exp Psychol A 48:1024–1040

    PubMed  CAS  Google Scholar 

  49. Wearden JH, Penton-Voak IS (1995) Feeling the heat: body temperature and the rate of subjective time, revisited. Q J Exp Psychol 48:129–141

    CAS  Google Scholar 

  50. West MO, Peoples LL, Michael AJ, Chapin JK, Woodward DJ (1997) Low-dose amphetamine elevates movement-related firing of rat striatal neurons. Brain Res 745:331–335

    PubMed  Article  CAS  Google Scholar 

  51. Woods DL, Clayworth CC, Knight RT, Simpson GV, Naeser MA (1987) Generators of middle- and long-latency auditory evoked potentials: implications from studies of patients with bitemporal lesions. Electroencephalogr Clin Neurophysiol 68:132–148

    PubMed  Article  CAS  Google Scholar 

  52. Woodward DJ, Janak PH, Chang JY (1998) Ethanol action on neural networks studied with multineuron recording in freely moving animals. Alcohol Clin Exp Res 22:10–22

    PubMed  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to F. Tecchio.

Additional information

Published online: 25 August 2000

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tecchio, F., Salustri, C., Thaut, M.H. et al. Conscious and preconscious adaptation to rhythmic auditory stimuli: a magnetoencephalographic study of human brain responses. Exp Brain Res 135, 222–230 (2000). https://doi.org/10.1007/s002210000507

Download citation

Key words

  • Rhythm perception
  • Auditory evoked fields
  • Auditory-motor synchronization
  • Human