Skip to main content
Log in

Sleep deprivation induces late deleterious effects in a pharmacological model of Parkinsonism

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Parkinson’s disease is a degenerative, chronic and progressive disease, characterized by motor dysfunctions. Patients also exhibit non-motor symptoms, such as affective and sleep disorders. Sleep disorders can potentiate clinical and neuropathological features and lead to worse prognosis. The goal of this study was to evaluate the effects of sleep deprivation (SD) in mice submitted to a progressive pharmacological model of Parkinsonism (chronic administration with a low dose of reserpine). Male Swiss mice received 20 injections of reserpine (0.1 mg/kg) or vehicle, on alternate days. SD was applied before or during reserpine treatment and was performed by gentle handling for 6 h per day for 10 consecutive days. Animals were submitted to motor and non-motor behavioral assessments and neurochemical evaluations. Locomotion was increased by SD and decreased by reserpine treatment. SD during treatment delayed the onset of catalepsy, but SD prior to treatment potentiated reserpine-induced catalepsy. Thus, although SD induced an apparent beneficial effect on motor parameters, a delayed deleterious effect on alterations induced by reserpine was found. In the object recognition test, both SD and reserpine treatment produced cognitive deficits. In addition, the association between SD and reserpine induced anhedonic-like behavior. Finally, an increase in oxidative stress was found in hippocampus of mice subjected to SD, and tyrosine hydroxylase immunoreactivity was reduced in substantia nigra of reserpine-treated animals. Results point to a possible late effect of SD, aggravating the deficits in mice submitted to the reserpine progressive model of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Authors agree to make data presented in their paper available upon reasonable request.

References

  • Alkadhi K, Zagaar M, Alhaider I et al (2013) Neurobiological consequences of sleep deprivation. Curr Neuropharmacol 11(3):231–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarenga TA, Patti CL, Andersen ML et al (2008) Paradoxical sleep deprivation impairs acquisition, consolidation, and retrieval of a discriminative avoidance task in rats. Neurobiol Learn Mem 90(4):624–632

    Article  PubMed  Google Scholar 

  • Alves-dos-Santos L, Resende LS, Chiavegatto S (2020) Susceptibility and resilience to chronic social defeat stress in adolescent male mice: no correlation between social avoidance and sucrose preference. Neurobiol Stress 12:100221

    Article  PubMed  PubMed Central  Google Scholar 

  • Andersen ML (2004) Princípios éticos e práticos do uso de animais de experimentação. Universidade Federalde São Paulo, São Paulo

    Google Scholar 

  • Araujo P, Tufik S, Anderson ML (2014) Sleep and pain: a relationship that begins in early life. Pain Physician 17(6):E787–E798

    Article  PubMed  Google Scholar 

  • Barbosa FF, Pontes IM, Ribeiro S et al (2012) Differential roles of the dorsal hippocampal regions in the acquisition of spatial and temporal aspects of episodic-like memory. Behav Brain Res 232(1):269–277

    Article  PubMed  Google Scholar 

  • Berro LF, Santos R, Hollais AW et al (2014) Acute total sleep deprivation potentiates cocaine-induced hyperlocomotion in mice. Neurosci Lett 579:130–133

    Article  CAS  PubMed  Google Scholar 

  • Beserra-Filho JIA, de Macêdo AM, Leão AHFF et al (2019) Eplingiella arkinson leaf essential oil complexed with β-cyclodextrin produces a superior neuroprotective and behavioral profile in a mice model of Parkinson’s disease. Food Chem Toxicol 124:17–29

    Article  CAS  PubMed  Google Scholar 

  • Bispo JMM, Melo JEC, Gois AM et al (2019) Sex differences in the progressive model of parkinsonism induced by reserpine in rats. Behav Brain Res 363:23–29

    Article  CAS  PubMed  Google Scholar 

  • Blasco-Serra A, Alfosea-Cuadrado G, Cervera-Ferri A et al (2020) Hippocampal oscillatory dynamics and sleep atonia are altered in an animal model of fibromyalgia: Implications in the search for biomarkers. J Comp Neurol 528(8):1367–1391

    Article  PubMed  Google Scholar 

  • Bowers D, Miller K, Mikos A et al (2006) Starling facts about emotion in Parkinson’s disease: blunted reactivity to aversive stimuli. Brain 129:3356–3365

    Article  PubMed  Google Scholar 

  • Braak H, del Tredici K, Rüb U et al (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24(2):197–211

    Article  PubMed  Google Scholar 

  • Brandão LEM, Nôga DAMF, Dierschnabel AL et al (2017) Passiflora cincinnata extract delays the development of motor signs and prevents dopaminergic loss in a mice model of Parkinson’s Disease. Evid Based Complement Alternat Med 2017:8429290

    Article  PubMed  PubMed Central  Google Scholar 

  • Campêlo CLC, Santos JR, Silva AF et al (2017) Exposure to an enriched environment facilitates motor recovery and prevents short-term memory impairment and reduction of striatal BDNF in a progressive pharmacological model of parkinsonism in mice. Behav Brain Res 328:138–148

    Article  PubMed  Google Scholar 

  • Chittora R, Jain A, Shukla SD, Bhatnagar M (2022) Cytomorphological analysis and interpretation of nitric oxide-mediated neurotoxicity in sleep-deprived mice model. Ann Neurosci 29(1):7–15

    Article  PubMed  PubMed Central  Google Scholar 

  • Cunha DMG, Becegato M, Meurer YSR et al (2022) Neuroinflammation in early, late and recovery stages in a progressive parkinsonism model in rats. Front Neurosci 16:923957

    Article  PubMed  PubMed Central  Google Scholar 

  • Deumens R, Blokland A, Prickaerts J (2002) Modeling Parkinson’s disease in rats: an evaluation of 6-OHDA lesions of the nigrostriatal pathway. Exp Neurol 175(2):303–317

    Article  CAS  PubMed  Google Scholar 

  • Devito LM, Eichenbaum H (2010) Distinct contributions of the hippocampus and medial prefrontal cortex to the “what-where-when” components of episodic-like memory in mice. Behav Brain Res 215(2):318–325

    Article  PubMed  Google Scholar 

  • dos Santos AC, Castro MA, Jose EA et al (2013) REM sleep deprivation generates cognitive and neurochemical disruptions in the intranigral rotenone model of Parkinson’s disease. J Neurosci Res 91(11):1508–1516

    Article  PubMed  Google Scholar 

  • Dos Santos TFO, Santos DE, RE., Bispo J.M.M., et al (2021) Balance alterations and reduction of pedunculopontine cholinergic neurons in early stages of Parkinsonism in middle-aged rats. Exp Gerontol 145:111198

    Article  PubMed  Google Scholar 

  • Ennaceur A (2010) One-trial object recognition in rats and mice: methodological and theoretical issues. Behav Brain Res 215(2):244–254

    Article  CAS  PubMed  Google Scholar 

  • Fernandes VS, Santos JR, Leão AHFF et al (2012) Repeated treatment with a low dose of reserpine as a progressive model of Parkinson’s disease. Behav Brain Res 231(1):154–163

    Article  CAS  PubMed  Google Scholar 

  • Fernandes-Santos L, Patti CL, Zanin KA et al (2012) Sleep deprivation impairs emotional memory retrieval in mice: influence of sex. Prog Neuro-Psychopharmacol Biol Psychiatry 38(2):216–222

    Article  Google Scholar 

  • Fifel K, Piggins H, Deboer T (2016) Modeling sleep alterations in Parkinson’s disease: how close are we to valid translational animal models? Sleep Med Rev 25:95–111

    Article  PubMed  Google Scholar 

  • Geibl FF, Henrich MT, Oertel WH (2019) Mesencephalic and extramesencephalic dopaminergic systems in Parkinson’s disease. J Neural Transm 126:377–396

    Article  CAS  PubMed  Google Scholar 

  • Gelders G, Baekelandt V, van der Perren A (2018) Linking neuroinflammation and neurodegeneration in Parkinson’s disease. J Immunol Res 2018:4784268

    Article  PubMed  PubMed Central  Google Scholar 

  • Gómez-Esteban JC, Tijero B, Somme J et al (2011) Impact of psychiatric symptoms and sleep disorders on the quality of life of patients with Parkinson’s disease. J Neurol 258:494–499

    Article  PubMed  Google Scholar 

  • Gopalakrishnan A, Ji LL, Cirelli C (2004) Sleep deprivation and cellular responses to oxidative stress. Sleep 27(1):27–35

    Article  PubMed  Google Scholar 

  • Hanlon EC, Andrzejewski ME, Harder BK et al (2005) The effect of REM sleep deprivation on motivation for food reward. Behav Brain Res 163:58–69

    Article  PubMed  Google Scholar 

  • Hemmerle AM, Dickerson JW, Herman JP, Seroogy KB (2014) Stress exacerbates experimental Parkinson’s disease. Mol Psychiatry 19(6):638–640

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Leon A, Fernández-Guasti A, Martínez A et al (2019) Sleep architecture is altered in the reserpine-induced fibromyalgia model in ovariectomized rats. Behav Brain Res 364:383–392

    Article  PubMed  Google Scholar 

  • Högl B, Peralta C, Wetter TC et al (2001) Effect of sleep deprivation on motor performance in patients with Parkinson’s disease. Mov Disord 16(4):616–621

    Article  PubMed  Google Scholar 

  • Hou G, Tian R, Li J, Yuan TF (2014) Chronic stress and Parkinson’s disease. CNS Neurosci Ther 20(1):1–2

    Article  CAS  PubMed  Google Scholar 

  • Howard KA, Hunter AS (2019) Immediate and long-lasting cognitive consequences of adolescent chronic sleep restriction. Behav Neurosci 133(5):461–466

    Article  PubMed  Google Scholar 

  • Kalaitzakis ME, Gentleman SM, Pearce RK (2013) Disturbed sleep in Parkinson’s disease: anatomical and pathological correlates. Neuropathol Appl Neurobiol 39(6):644–653

    Article  CAS  PubMed  Google Scholar 

  • Klingaman EA, Palmer-Bacon J, Bennett ME, Rowland LM (2015) Sleep disorders among people with schizophrenia: emerging research. Curr Psychiatry Rep 17(10):616

    Article  Google Scholar 

  • Leal PC, Bispo JMM, Lins LCRF et al (2019) Cognitive and anxiety-like impairments accompanied by serotonergic ultrastructural and immunohistochemical alterations in early stages of Parkinsonism. Brain Res Bull 146:213–223

    Article  CAS  PubMed  Google Scholar 

  • Leão AHFF, Sarmento-Silva AJ, Santos JR et al (2015) Molecular, neurochemical, and behavioral hallmarks of reserpine as a model for Parkinson’s disease: new perspectives to a long-standing model. Brain Pathol 25(4):377–390

    Article  PubMed  PubMed Central  Google Scholar 

  • Leão AHFF, Meurer YSR, da Silva AF et al (2017) Spontaneously Hypertensive Rats (SHR) are resistant to a reserpine-induced progressive model of parkinson’s disease: differences in motor behavior, tyrosine hydroxylase and a-synuclein expression. Front Aging Neurosci 9:78

    Article  PubMed  PubMed Central  Google Scholar 

  • Leão AHFF, Meurer YSR, Freitas TA (2021) Changes in the mesocorticolimbic pathway after low dose reserpine-treatment in Wistar and Spontaneously Hypertensive Rats (SHR): Implications for cognitive deficits in a progressive animal model for Parkinson’s disease. Behav Brain Res 410:113349

    Article  PubMed  Google Scholar 

  • Lima AC, Meurer YSR, Bioni VS et al (2021) Female rats are resistant to cognitive, motor and dopaminergic deficits in the reserpine-induced progressive model of Parkinson’s disease. Front Aging Neurosci 13:757714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lins LCRF, Souza MF, Bispo JMM et al (2018) Carvacrol prevents impairments in motor and neurochemical parameters in a model of progressive parkinsonism induced by reserpine. Brain Res Bull 139:9–15

    Article  CAS  PubMed  Google Scholar 

  • Lu C, Lv J, Jiang N et al (2020) Protective effects of Genistein on the cognitive deficits induced by chronic sleep deprivation. Phytother Res 34(4):846–858

    Article  CAS  PubMed  Google Scholar 

  • Majdi A, Mahmoudi J, Sadigh-Eteghad S et al (2016) Permissive role of cytosolic pH acidification in neurodegeneration: a closer look at its causes and consequences. J Neurosci Res 94:879–887

    Article  CAS  PubMed  Google Scholar 

  • Mantri S, Morley JF, Siderowf AD (2019) The importance of preclinical diagnostics in Parkinson disease. Parkinsonism Relat Disord 64:20–28

    Article  PubMed  Google Scholar 

  • McDonald WM, Richard IH, Delong MR (2003) Prevalence, etiology, and treatment of depression in Parkinson’s disease. Biol Psychiatry 54:363–375

    Article  PubMed  Google Scholar 

  • Melo JEC, Santos TFO, Santos RS, Franco HS, Monteiro MCN, Bispo JMM, Mendonça MS, Ribeiro AM, Silva RH, Gois AM, Marchioro M, Lins LCRF, Santos JR (2022) Aging accentuates decrease in tyrosine hydroxylase immunoreactivity associated with the increase in the motor impairment in a model of reserpine-induced parkinsonism. J Chem Neuroanat 125:102162

    Article  CAS  PubMed  Google Scholar 

  • Mohammed HS, Aboul Ezz HS, Khadrawy YA, Noor NA (2011) Neurochemical and electrophysiological changes induced by paradoxical sleep deprivation in rats. Behav Brain Res 225(1):39–46

    Article  CAS  PubMed  Google Scholar 

  • Monderer R, Thorpy M (2009) Sleep disorders and daytime sleepiness in Parkinson’s disease. Curr Neurol Neurosci Rep 9(2):173–180

    Article  PubMed  Google Scholar 

  • Nunes Junior GP, Tufik S, Nobrega JN (1994) Autoradiographic analysis of D1 and D2 dopaminergic receptors in rat brain after paradoxical sleep deprivation. Brain Res Bull 34(5):453–456

    Article  CAS  PubMed  Google Scholar 

  • Onaolapo JO, Onaolapo YA, Akanmu AM, Olayiwola G (2016) Caffeine and sleep-deprivation mediated changes in open-field behaviours, stress response and antioxidant status in mice. Sleep Sci 9(3):236–243

    Article  PubMed  PubMed Central  Google Scholar 

  • Patti CL, Zanin KA, Sanday L et al (2010) Effects of sleep deprivation on memory in mice: role of state-dependent learning. Sleep 33:1669–1679

    Article  PubMed  PubMed Central  Google Scholar 

  • Paxinos G, Watson C (2007) The Rat Brain in Stereotaxic Coordinates, 6th edn. Academic Press, SanDiego

    Google Scholar 

  • Pfeiffer RF (2016) Non-motor symptoms in Parkinson’s disease. Parkinsonism Relat Disord 22(Suppl 1):S119–S122

    Article  PubMed  Google Scholar 

  • Przedborski S, Jackson-Lewis V, Naini AB et al (2001) The parkinsonian toxin (MPTP): a technical review of its utility and safety. J Neurochem 76:1265–1274

    Article  CAS  PubMed  Google Scholar 

  • Ramanathan L, Gulyani S, Nienhuis R, Siegel JM (2002) Sleep deprivation decreases superoxide dismutase activity in rat hippocampus and brainstem. NeuroReport 13(11):1387–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raven F, van der Zee EA, Meerlo P et al (2018) The role of sleep in regulating structural plasticity and synaptic strength: Implications for memory and cognitive function. Sleep Med Rev 39:3–11

    Article  PubMed  Google Scholar 

  • Reimund E (1994) The free radical flux theory of sleep. Med Hypotheses 43(4):231–233

    Article  CAS  PubMed  Google Scholar 

  • Reist C, Sokolski KN, Chen CC et al (1995) The effect of sleep deprivation on motor impairment and retinal adaptation in Parkinson’s disease. Prog Neuropsychopharmacol Biol Psychiatry 19(3):445–454

    Article  CAS  PubMed  Google Scholar 

  • Santos JR, Cunha JA, Dierschnabel AL et al (2013) Cognitive, motor and tyrosine hydroxylase temporal impairment in a model of Parkinsonism induced by reserpine. Behav Brain Res 253:68–77

    Article  CAS  PubMed  Google Scholar 

  • Saré RM, Levine M, Hildreth C et al (2016) Chronic sleep restriction during development can lead to long-lasting behavioral effects. Physiol Behav 155:208–217

    Article  PubMed  Google Scholar 

  • Seugnet L, Galvin JE, Suzuki Y et al (2009) Persistent short-term memory defects following sleep deprivation in a drosophila model of Parkinson disease. Sleep 32(8):84–92

    Article  Google Scholar 

  • Silva RH, Abílio VC, Takatsu AL et al (2004) Role of hippocampal oxidative stress in memory deficits induced by sleep deprivation in mice. Neuropharmacology 46(6):895–903

    Article  CAS  PubMed  Google Scholar 

  • Smith AD, Castro SL, Zigmond MJ (2002) Stress-induced Parkinson’s disease: a working hypothesis. Physiol Behav 77(4–5):527–531

    Article  CAS  PubMed  Google Scholar 

  • Soares MBL, Lopes-Silva LB, Becegato M et al (2021) Reserpine-induced progressive parkinsonism in mice predisposed and non-predisposed to depressive-like behavior. J Behav Brain Sci 11:267–279

    Article  CAS  Google Scholar 

  • Strekalova T, Steinbusch HWM (2010) Measuring behavior in mice with chronic stress depression paradigm. Progress in Neuro-Psychopharmacol Biol Psychiatry 34(2):348–361

    Article  Google Scholar 

  • Tanizawa H, Sazuka Y, Takino Y (1981) Micro-determination of lipoperoxide in the mouse myocardium by thiobarbituric acid fluorophotometry. Chem Pharm Bull (tokyo) 29:2910–2914

    Article  CAS  PubMed  Google Scholar 

  • Tufik S (1981) Changes of response to dopaminergic drugs in rats submitted to REM-sleep deprivation. Psychopharmacology 3:257–260

    Article  Google Scholar 

  • Videnovic A, Golombek D (2013) Circadian and sleep disorders in Parkinson’s disease. Exp Neurol 243:45–56

    Article  PubMed  Google Scholar 

  • Villafuerte G, Miguel-Puga A, Rodríguez EM et al (2015) Sleep deprivation and oxidative stress in animal models: a systematic review. Oxid Med Cell Longev 2015:234952

    Article  PubMed  PubMed Central  Google Scholar 

  • Wuo-Silva R, Fukushiro DF, Hollais AW et al (2016) Modafinil induces rapid-onset behavioral sensitization and cross-sensitization with cocaine in mice: implications for the addictive potential of modafinil. Front Pharmacol 7:420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Claudenice M. dos Santos and Cleomar S. Ferreira (in memoriam) for technical assistance. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES, Finance Code 001) and by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Grants 2015/03354-3 and 2017/26253-3). RHS is a recipient of a research fellowship from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Grant 313631/2021-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. H. Silva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests or personal relationships that could have influenced the work reported in this paper.

Additional information

Communicated by Winston D Byblow.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes-Silva, L.B., Cunha, D.M.G., Lima, A.C. et al. Sleep deprivation induces late deleterious effects in a pharmacological model of Parkinsonism. Exp Brain Res (2024). https://doi.org/10.1007/s00221-024-06811-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00221-024-06811-0

Keywords

Navigation