Skip to main content

Advertisement

Log in

Targeting EZH2 regulates the biological characteristics of glioma stem cells via the Notch1 pathway

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Glioma is the most common malignant brain tumor, and its behavior is closely related to the presence of glioma stem cells (GSCs). We found that the enhancer of zeste homolog 2 (EZH2) is highly expressed in glioma and that its expression is correlated with the prognosis of glioblastoma multiforme (GBM) in two databases: The Cancer Genome Atlas and the Chinese Glioma Genome Atlas. Additionally, EZH2 is known to regulate the stemness-associated gene expression, proliferation, and invasion ability of GSCs, which may be achieved through the activation of the STAT3 and Notch1 pathways. Furthermore, we demonstrated the effect of the EZH2-specific inhibitor GSK126 on GSCs; these results not only corroborate our hypothesis, but also provide a potential novel treatment approach for glioma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Aster JC, Pear WS, Blacklow SC (2017) The varied roles of notch in cancer. Annu Rev Pathol 12:245–275

    Article  CAS  PubMed  Google Scholar 

  • Bao S, Wu Q, McLendon RE et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444(7120):756–760

    Article  CAS  PubMed  Google Scholar 

  • Bianchi S, Dotti MT, Federico A (2006) Physiology and pathology of notch signalling system. J Cell Physiol 207(2):300–308

    Article  CAS  PubMed  Google Scholar 

  • Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, Zheng S, Chakravarty D, Sanborn JZ, Berman SH, Beroukhim R, Bernard B, Wu CJ, Genovese G, Shmulevich I, Barnholtz-Sloan J, Zou L, Vegesna R, Shukla SA, Ciriello G, Yung WK, Zhang W, Sougnez C, Mikkelsen T, Aldape K, Bigner DD, Van Meir EG, Prados M, Sloan A, Black KL, Eschbacher J, Finocchiaro G, Friedman W, Andrews DW, Guha A, Iacocca M, O’Neill BP, Foltz G, Myers J, Weisenberger DJ, Penny R, Kucherlapati R, Perou CM, Hayes DN, Gibbs R, Marra M, Mills GB, Lander E, Spellman P, Wilson R, Sander C, Weinstein J, Meyerson M, Gabriel S, Laird PW, Haussler D, Getz G, Chin L (2013) The somatic genomic landscape of glioblastoma. Cell 155(2):462–477. https://doi.org/10.1016/j.cell.2013.09.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Aksoy I, Gonnot F et al (2015) Reinforcement of STAT3 activity reprogrammes human embryonic stem cells to naive-like pluripotency. Nat Commun 6:7095

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Hu L, Yang H et al (2019) DHHC protein family targets different subsets of glioma stem cells in specific niches. J Exp Clin Cancer Res 38(1):25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chillakuri CR, Sheppard D, Lea SM, Handford PA (2012) Notch receptor-ligand binding and activation: insights from molecular studies. Semin Cell Dev Biol 23(4):421–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Codrici E, Enciu AM, Popescu ID, Mihai S, Tanase C (2016) Glioma stem cells and their microenvironments: providers of challenging therapeutic targets. Stem Cells Int 2016:5728438

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong F, Eibach M, Bartsch JW, Dolga AM, Schlomann U, Conrad C, Schieber S, Schilling O, Biniossek ML, Culmsee C, Strik H, Koller G, Carl B, Nimsky C (2015) The metalloprotease-disintegrin ADAM8 contributes to temozolomide chemoresistance and enhanced invasiveness of human glioblastoma cells. Neuro Oncol 17:1474–1485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eich ML, Athar M, Ferguson JE, Varambally S (2020) EZH2-targeted therapies in cancer: hype or a reality. Cancer Res 80(24):5449–5458. https://doi.org/10.1158/0008-5472.CAN-20-2147

    Article  PubMed  PubMed Central  Google Scholar 

  • Guanizo AC, Fernando CD, Garama DJ, Gough DJ (2018) STAT3: a multifaceted oncoprotein. Growth Factors 36(1–2):1–14

    Article  CAS  PubMed  Google Scholar 

  • Guryanova OA, Wu Q, Cheng L et al (2011) Nonreceptor tyrosine kinase BMX maintains self-renewal and tumorigenic potential of glioblastoma stem cells by activating STAT3. Cancer Cell 19(4):498–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardee ME, Zagzag D (2012) Mechanisms of glioma-associated neovascularization. Am J Pathol 181(4):1126–1141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Q, Zhang QB, Dong J, Wu YY, Shen YT, Zhao YD, Zhu YD, Diao Y, Wang AD, Lan Q (2008) Glioma stem cells are more aggressive in recurrent tumors with malignant progression than in the primary tumor, and both can be maintained long-term in vitro. BMC Cancer 8:304. https://doi.org/10.1186/1471-2407-8-304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahan N, Lee JM, Shah K, Wakimoto H (2017) Therapeutic targeting of chemoresistant and recurrent glioblastoma stem cells with a proapoptotic variant of oncolytic herpes simplex virus. Int J Cancer 141(8):1671–1681. https://doi.org/10.1002/ijc.30811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jhaveri N, Chen TC, Hofman FM (2016) Tumor vasculature and glioma stem cells: contributions to glioma progression. Cancer Lett 380(2):545–551

    Article  CAS  PubMed  Google Scholar 

  • Johnson BE, Mazor T, Hong C, Barnes M, Aihara K, McLean CY, Fouse SD, Yamamoto S, Ueda H, Tatsuno K, Asthana S, Jalbert LE, Nelson SJ, Bollen AW, Gustafson WC, Charron E, Weiss WA, Smirnov IV, Song JS, Olshen AB, Cha S, Zhao Y, Moore RA, Mungall AJ, Jones S, Hirst M, Marra MA, Saito N, Aburatani H, Mukasa A, Berger MS, Chang SM, Taylor BS, Costello JF (2014) Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science 343(6167):189–193. https://doi.org/10.1126/science.1239947

    Article  CAS  PubMed  Google Scholar 

  • Kim E, Kim M, Woo DH, Shin Y, Shin J, Chang N, Oh YT, Kim H, Rheey J, Nakano I, Lee C, Joo KM, Rich JN, Nam DH, Lee J (2013) Phosphorylation of EZH2 activates STAT3 signaling via STAT3 methylation and promotes tumorigenicity of glioblastoma stem-like cells. Cancer Cell 23:839–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Tao Z, Wang H, Deng Z, Zhou Y, Du Z (2020) Dual inhibition of Src and PLK1 regulate stemness and induce apoptosis through Notch1-SOX2 signaling in EGFRvIII positive glioma stem cells (GSCs). Exp Cell Res 396(1):112261. https://doi.org/10.1016/j.yexcr.2020.112261

    Article  CAS  PubMed  Google Scholar 

  • Liebelt BD, Shingu T, Zhou X, Ren J, Shin SA, Hu J (2016) Glioma Stem Cells: Signaling, Microenvironment, and Therapy. Stem Cells Int 2016:7849890

    Article  PubMed  PubMed Central  Google Scholar 

  • Lim HJ, Kim M (2020) EZH2 as a potential target for NAFLD therapy. Int J Mol Sci 21(22):8617. https://doi.org/10.3390/ijms21228617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindsell CE, Boulter J, diSibio G, Gossler A, Weinmaster G (1996) Expression patterns of Jagged, Delta1, Notch1, Notch2, and Notch3 genes identify ligand-receptor pairs that may function in neural development. Mol Cell Neurosci 8(1):14–27

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Sun Y, Qi X, Gordon RE, O’Brien JA, Yuan H, Zhang J, Wang Z, Zhang M, Song Y, Yu C, Gu C (2019) EZH2 Phosphorylation promotes self-renewal of glioma stem-like cells through NF-κB methylation. Front Oncol 9:641. https://doi.org/10.3389/fonc.2019.00641

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma Q, Long W, Xing C et al (2018) Cancer stem cells and immunosuppressive microenvironment in glioma. Front Immunol 9:2924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahabir R, Tanino M, Elmansuri A, Wang L, Kimura T, Itoh T, Ohba Y, Nishihara H, Shirato H, Tsuda M, Tanaka S (2014) Sustained elevation of Snail promotes glial-mesenchymal transition after irradiation in malignant glioma. Neuro Oncol 16(5):671–685. https://doi.org/10.1093/neuonc/not239

    Article  CAS  PubMed  Google Scholar 

  • Nutt SL, Keenan C, Chopin M, Allan RS (2020) EZH2 function in immune cell development. Biol Chem 401(8):933–943

    Article  CAS  PubMed  Google Scholar 

  • Omuro AM, Faivre S, Raymond E (2007) Lessons learned in the development of targeted therapy for malignant gliomas. Mol Cancer Ther 6(7):1909–1919

    Article  CAS  PubMed  Google Scholar 

  • Pasini D, Di Croce L (2016) Emerging roles for Polycomb proteins in cancer. Curr Opin Genet Dev 36:50–58

    Article  CAS  PubMed  Google Scholar 

  • Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, Doig A, Guilliams T, Latimer J, McNamee C, Norris A, Sanseau P, Cavalla D, Pirmohamed M (2019) Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov 18(1):41–58. https://doi.org/10.1038/nrd.2018.168

    Article  CAS  PubMed  Google Scholar 

  • Rahal F, Capdevielle C, Rousseau B, Izotte J, Dupuy JW, Cappellen D, Chotard G, Ménard M, Charpentier J, Jecko V, Caumont C, Gimbert E, Grosset CF, Hagedorn M (2022) An EZH2 blocker sensitizes histone mutated diffuse midline glioma to cholesterol metabolism inhibitors through an off-target effect. Neurooncol Adv 4(1):018. https://doi.org/10.1093/noajnl/vdac018

    Article  Google Scholar 

  • Ratnam NM, Sonnemann HM, Frederico SC, Chen H, Hutchinson M, Dowdy T, Reid CM, Jung J, Zhang W, Song H, Zhang M, Davis D, Larion M, Giles AJ, Gilbert MR (2021) Reversing epigenetic gene silencing to overcome immune evasion in cns malignancies. Front Oncol 11:719091. https://doi.org/10.3389/fonc.2021.719091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rolle CE, Sengupta S, Lesniak MS (2010) Challenges in clinical design of immunotherapy trials for malignant glioma. Neurosurg Clin N Am 21(1):201–214

    Article  PubMed  PubMed Central  Google Scholar 

  • Sgrignani J, Garofalo M, Matkovic M, Merulla J, Catapano CV, Cavalli A (2018) Structural biology of STAT3 and Its implications for anticancer therapies development. Int J Mol Sci 19(6):1591

    Article  PubMed  PubMed Central  Google Scholar 

  • Simon JA, Lange CA (2008) Roles of the EZH2 histone methyltransferase in cancer epigenetics. Mutat Res 647(1–2):21–29

    Article  CAS  PubMed  Google Scholar 

  • Smits M, van Rijn S, Hulleman E, Biesmans D, van Vuurden DG, Kool M, Haberler C, Aronica E, Vandertop WP, Noske DP, Würdinger T (2012) EZH2-regulated DAB2IP is a medulloblastoma tumor suppressor and a positive marker for survival. Clin Cancer Res 18(15):4048–4058. https://doi.org/10.1158/1078-0432.CCR-12-0399

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Aoyagi M, Ando N, Ogishima T, Wakimoto H, Yamamoto M, Ohno K (2013) Expansion of CD133-positive glioma cells in recurrent de novo glioblastomas after radiotherapy and chemotherapy. J Neurosurg 119(5):1145–1155. https://doi.org/10.3171/2013.7.JNS122417

    Article  PubMed  Google Scholar 

  • Tan M, Sandanaraj E, Chong YK et al (2019) A STAT3-based gene signature stratifies glioma patients for targeted therapy. Nat Commun 10(1):3601

    Article  PubMed  PubMed Central  Google Scholar 

  • Tao Z, Li X, Wang H, Chen G, Feng Z, Wu Y, Yin H, Zhao G, Deng Z, Zhao C, Li Y, Sun T, Zhou Y (2020) BRD4 regulates self-renewal ability and tumorigenicity of glioma-initiating cells by enrichment in the Notch1 promoter region. Clin Transl Med 10(6):181. https://doi.org/10.1002/ctm2.181

    Article  CAS  Google Scholar 

  • Van Aller GS, Pappalardi MB, Ott HM, Diaz E, Brandt M, Schwartz BJ, Miller WH, Dhanak D, McCabe MT, Verma SK, Creasy CL, Tummino PJ, Kruger RG (2014) Long residence time inhibition of EZH2 in activated polycomb repressive complex 2. ACS Chem Biol 9(3):622–629. https://doi.org/10.1021/cb4008748

    Article  CAS  PubMed  Google Scholar 

  • Verma A, Singh A, Singh MP, Nengroo MA, Saini KK, Satrusal SR, Khan MA, Chaturvedi P, Sinha A, Meena S, Singh AK, Datta D (2022) EZH2-H3K27me3 mediated KRT14 upregulation promotes TNBC peritoneal metastasis. Nat Commun 13(1):7344. https://doi.org/10.1038/s41467-022-35059-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359(5):492–507

    Article  CAS  PubMed  Google Scholar 

  • Wen Y, Cai J, Hou Y, Huang Z, Wang Z (2017) Role of EZH2 in cancer stem cells: from biological insight to a therapeutic target. Oncotarget 8(23):37974–37990

    Article  PubMed  PubMed Central  Google Scholar 

  • Weng HR, Taing K, Chen L, Penney A (2023) EZH2 Methyltransferase regulates neuroinflammation and neuropathic pain. Cells 12(7):1758. https://doi.org/10.3390/cells12071058

    Article  CAS  Google Scholar 

  • Yang Q, Zhao S, Shi Z, Cao L, Liu J, Pan T, Zhou D, Zhang J (2021) Chemotherapy-elicited exosomal miR-378a-3p and miR-378d promote breast cancer stemness and chemoresistance via the activation of EZH2/STAT3 signaling. J Exp Clin Cancer Res 40:120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi L, Zhou X, Li T et al (2019) Notch1 signaling pathway promotes invasion, self-renewal and growth of glioma initiating cells via modulating chemokine system CXCL12/CXCR4. J Exp Clin Cancer Res 38(1):339

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9(11):798–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhai Y, Li G, Li R et al (2020) Single-Cell RNA-sequencing shift in the interaction pattern between glioma stem cells and immune cells during tumorigenesis. Front Immunol 11:581209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng X, Pang B, Gu G, Gao T, Zhang R, Pang Q, Liu Q (2017) Melatonin Inhibits Glioblastoma Stem-like cells through Suppression of EZH2–NOTCH1 Signaling Axis. Int J Biol Sci 13:245–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Brain and Nerve Research Laboratory for providing technical instruction.

Funding

This work was supported by Suzhou Science and Technology Plan Projects (SYS2020123), Wujiang Science, Education, and Health Project (WWK202112), and Suzhou Ninth People’s Hospital Research Fund Project (YK202128).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youxin Zhou.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Communicated by Sreedharan Sajikumar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 196 KB)

Supplementary file2 (DOCX 2188 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, G., Deng, Z., Li, X. et al. Targeting EZH2 regulates the biological characteristics of glioma stem cells via the Notch1 pathway. Exp Brain Res 241, 2409–2418 (2023). https://doi.org/10.1007/s00221-023-06693-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-023-06693-8

Keywords

Navigation