Skip to main content

Advertisement

Log in

MicroRNA-124 conducts neuroprotective effect via inhibiting AK4/ATF3 after subarachnoid hemorrhage

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Spontaneous subarachnoid hemorrhage (SAH) accounts for approximately 5% of all cases of stroke. SAH is correlated with elevated rates of mortality and disability. Despite significant advancements in comprehending the pathogenesis and surgical management, efficacious clinical interventions remain restricted, and the prognosis is yet to be enhanced. MicroRNAs play a crucial role in various pathological processes in organisms. Revealing these regulatory processes is conducive to the development of new treatment methods. MicroRNA-124 is highly expressed in the nervous system and has significant research value for SAH. This study aims to explore the role of miR-124 in the early post-SAH period on neural function and verify whether it is involved in the pathological and physiological processes of SAH. In this study, we used methods such as comparing the expression levels of miR-124 in cerebrospinal fluid, establishing a rat SAH model, and a mouse embryonic primary neuron hemoglobin stimulation model to verify the downstream proteins of miR-124 in SAH. Through transfection techniques, we adjusted the expression of this small RNA in Vitro and in Vivo models using miR-124 inhibitor and mimic in the primary neuron hemoglobin stimulation model and rat SAH model, and observed the phenotype. Finally, by consulting the literature and verifying in Vivo and in Vitro methods, AK4 and downstream molecule ATF3 were identified as downstream targets of miR-124.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  • Acharya A, Raza SI, Anwar MZ, Bharadwaj T, Liaqat K, Khokhar MAS, Everard JL, Nasir A, G. University of Washington Center for Mendelian, Nickerson DA, Bamshad MJ, Ansar M, Schrauwen I, Ahmad W, Leal SM (2021) Wolfram-like syndrome with bicuspid aortic valve due to a homozygous missense variant in CDK13. J Hum Genet 66:1009–1018

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown RD Jr, Broderick JP (2014) Unruptured intracranial aneurysms: epidemiology, natural history, management options, and familial screening. Lancet Neurol 13:393–404

    PubMed  Google Scholar 

  • Bushati N, Cohen SM (2007) microRNA functions. Annu Rev Cell Dev Biol 23:175–205

    CAS  PubMed  Google Scholar 

  • Caplan LR (2008) Dissections of brain-supplying arteries. Nat Clin Pract Neurol 4:34–42

    PubMed  Google Scholar 

  • Caruso P, Dunmore BJ, Schlosser K, Schoors S, Dos Santos C, Perez-Iratxeta C, Lavoie JR, Zhang H, Long L, Flockton AR, Frid MG, Upton PD, D’Alessandro A, Hadinnapola C, Kiskin FN, Taha M, Hurst LA, Ormiston ML, Hata A, Stenmark KR, Carmeliet P, Stewart DJ, Morrell NW (2017) Identification of MicroRNA-124 as a major regulator of enhanced endothelial cell glycolysis in pulmonary arterial hypertension via PTBP1 (polypyrimidine tract binding protein) and pyruvate kinase M2. Circulation 136:2451–2467

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Li Q, Wu H, Krafft PR, Wang Z, Zhang JH (2014a) The harmful effects of subarachnoid hemorrhage on extracerebral organs. Biomed Res Int 2014:858496

    PubMed  PubMed Central  Google Scholar 

  • Chen S, Zhu Z, Klebe D, Bian H, Krafft PR, Tang J, Zhang J, Zhang JH (2014b) Role of P2X purinoceptor 7 in neurogenic pulmonary edema after subarachnoid hemorrhage in rats. PLoS ONE 9:e89042

    PubMed  PubMed Central  Google Scholar 

  • Chen W, Yu F, Di M, Li M, Chen Y, Zhang Y, Liu X, Huang X, Zhang M (2018) MicroRNA-124-3p inhibits collagen synthesis in atherosclerotic plaques by targeting prolyl 4-hydroxylase subunit alpha-1 (P4HA1) in vascular smooth muscle cells. Atherosclerosis 277:98–107

    CAS  PubMed  Google Scholar 

  • Chin WY, He CY, Chow TW, Yu QY, Lai LC, Miaw SC (2021) Adenylate kinase 4 promotes inflammatory gene expression via Hif1alpha and AMPK in macrophages. Front Immunol 12:630318

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chou SH (2021) Subarachnoid hemorrhage. Continuum (minneap Minn) 27:1201–1245

    PubMed  Google Scholar 

  • Chou SH, Lee PS, Konigsberg RG, Gallacci D, Chiou T, Arai K, Simmons S, Bauer D, Feske SK, Lo EH, Ning M (2011) Plasma-type gelsolin is decreased in human blood and cerebrospinal fluid after subarachnoid hemorrhage. Stroke 42:3624–3627

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Rooij NK, Linn FH, van der Plas JA, Algra A, Rinkel GJ (2007) Incidence of subarachnoid haemorrhage: a systematic review with emphasis on region, age, gender and time trends. J Neurol Neurosurg Psychiatry 78:1365–1372

    PubMed  PubMed Central  Google Scholar 

  • Fan H, Ding R, Liu W, Zhang X, Li R, Wei B, Su S, Jin F, Wei C, He X, Li X, Duan C (2021) Heat shock protein 22 modulates NRF1/TFAM-dependent mitochondrial biogenesis and DRP1-sparked mitochondrial apoptosis through AMPK-PGC1alpha signaling pathway to alleviate the early brain injury of subarachnoid hemorrhage in rats. Redox Biol 40:101856

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferragut F, Vachetta VS, Troncoso MF, Rabinovich GA, Elola MT (2021) ALCAM/CD166: a pleiotropic mediator of cell adhesion, stemness and cancer progression. Cytokine Growth Factor Rev 61:27–37

    CAS  PubMed  Google Scholar 

  • Garcia JH, Wagner S, Liu KF, Hu XJ (1995) Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Stat Valid Stroke 26:627–634 (discussion 635)

    CAS  Google Scholar 

  • Ghafouri-Fard S, Shoorei H, Bahroudi Z, Abak A, Majidpoor J, Taheri M (2021) An update on the role of miR-124 in the pathogenesis of human disorders. Biomed Pharmacother 135:111198

    CAS  PubMed  Google Scholar 

  • Gruber CN, Patel RS, Trachtman R, Lepow L, Amanat F, Krammer F, Wilson KM, Onel K, Geanon D, Tuballes K, Patel M, Mouskas K, O’Donnell T, Merritt E, Simons NW, Barcessat V, Del Valle DM, Udondem S, Kang G, Gangadharan S, Ofori-Amanfo G, Laserson U, Rahman A, Kim-Schulze S, Charney AW, Gnjatic S, Gelb BD, Merad M, Bogunovic D (2020) Mapping systemic inflammation and antibody responses in multisystem inflammatory syndrome in children (MIS-C). Cell 183:982-995 e914

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo J, Liu H, Fu L (2022) MicroRNA-124 ameliorates autophagic dysregulation in glaucoma via regulation of P2X7-mediated Akt/mTOR signaling. Cutan Ocul Toxicol 41:43–48

    PubMed  Google Scholar 

  • Hamzei Taj S, Kho W, Riou A, Wiedermann D, Hoehn M (2016) MiRNA-124 induces neuroprotection and functional improvement after focal cerebral ischemia. Biomaterials 91:151–165

    CAS  PubMed  Google Scholar 

  • Hu X, Yan J, Huang L, Araujo C, Peng J, Gao L, Liu S, Tang J, Zuo G, Zhang JH (2021) INT-777 attenuates NLRP3-ASC inflammasome-mediated neuroinflammation via TGR5/cAMP/PKA signaling pathway after subarachnoid hemorrhage in rats. Brain Behav Immun 91:587–600

    CAS  PubMed  Google Scholar 

  • Hung C, Livesey FJ (2021) Endolysosome and autophagy dysfunction in Alzheimer disease. Autophagy 17:3882–3883

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jan YH, Tsai HY, Yang CJ, Huang MS, Yang YF, Lai TC, Lee CH, Jeng YM, Huang CY, Su JL, Chuang YJ, Hsiao M (2012) Adenylate kinase-4 is a marker of poor clinical outcomes that promotes metastasis of lung cancer by downregulating the transcription factor ATF3. Cancer Res 72:5119–5129

    CAS  PubMed  Google Scholar 

  • Jan YH, Lai TC, Yang CJ, Lin YF, Huang MS, Hsiao M (2019) Adenylate kinase 4 modulates oxidative stress and stabilizes HIF-1alpha to drive lung adenocarcinoma metastasis. J Hematol Oncol 12:12

    PubMed  PubMed Central  Google Scholar 

  • Jun JH, Son MJ, Lee HG, Shim KY, Baek WK, Kim JY, Joo CK (2020) Regulation of Ras homolog family member G by microRNA-124 regulates proliferation and migration of human retinal pigment epithelial cells. Sci Rep 10:15420

    PubMed  PubMed Central  Google Scholar 

  • Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11:597–610

    CAS  PubMed  Google Scholar 

  • Lantigua H, Ortega-Gutierrez S, Schmidt JM, Lee K, Badjatia N, Agarwal S, Claassen J, Connolly ES, Mayer SA (2015) Subarachnoid hemorrhage: who dies, and why? Crit Care 19:309

    PubMed  PubMed Central  Google Scholar 

  • Lee JY, Keep RF, He Y, Sagher O, Hua Y, Xi G (2010) Hemoglobin and iron handling in brain after subarachnoid hemorrhage and the effect of deferoxamine on early brain injury. J Cereb Blood Flow Metab 30:1793–1803

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levey AI, Qiu D, Zhao L, Hu WT, Duong DM, Higginbotham L, Dammer EB, Seyfried NT, Wingo TS, Hales CM, Gamez Tansey M, Goldstein DS, Abrol A, Calhoun VD, Goldstein FC, Hajjar I, Fagan AM, Galasko D, Edland SD, Hanfelt J, Lah JJ, Weinshenker D (2022) A phase II study repurposing atomoxetine for neuroprotection in mild cognitive impairment. Brain 145:1924–1938

    PubMed  PubMed Central  Google Scholar 

  • Li MH, Chen SW, Li YD, Chen YC, Cheng YS, Hu DJ, Tan HQ, Wu Q, Wang W, Sun ZK, Wei XE, Zhang JY, Qiao RH, Zong WH, Zhang Y, Lou W, Chen ZY, Zhu Y, Peng DR, Ding SX, Xu XF, Hou XH, Jia WP (2013) Prevalence of unruptured cerebral aneurysms in Chinese adults aged 35 to 75 years: a cross-sectional study. Ann Intern Med 159:514–521

    PubMed  Google Scholar 

  • Lovelock CE, Rinkel GJ, Rothwell PM (2010) Time trends in outcome of subarachnoid hemorrhage: population-based study and systematic review. Neurology 74:1494–1501

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu TX, Rothenberg ME (2018) MicroRNA. J Allergy Clin Immunol 141:1202–1207

    CAS  PubMed  Google Scholar 

  • Ma L, Ma L, Yang Y, Chen T, Wang L, Deng Q (2022) Electroacupuncture-regulated miR-34a-3p/PDCD6 axis promotes post-spinal cord injury recovery in both in vitro and in vivo settings. J Immunol Res 2022:9329494

    PubMed  PubMed Central  Google Scholar 

  • Macdonald RL, Schweizer TA (2017) Spontaneous subarachnoid haemorrhage. Lancet 389:655–666

    PubMed  Google Scholar 

  • Matsui M, Corey DR (2017) Non-coding RNAs as drug targets. Nat Rev Drug Discov 16:167–179

    CAS  PubMed  Google Scholar 

  • Mohr AM, Mott JL (2015) Overview of microRNA biology. Semin Liver Dis 35:3–11

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagawa Y, Nishikimi T, Kuwahara K, Fujishima A, Oka S, Tsutamoto T, Kinoshita H, Nakao K, Cho K, Inazumi H, Okamoto H, Nishida M, Kato T, Fukushima H, Yamashita JK, Wijnen WJ, Creemers EE, Kangawa K, Minamino N, Nakao K, Kimura T (2017) MiR30-GALNT1/2 axis-mediated glycosylation contributes to the increased secretion of inactive human prohormone for brain natriuretic peptide (proBNP) from failing hearts. J Am Heart Assoc 6:e003601

    PubMed  PubMed Central  Google Scholar 

  • Ouyang Q, Liu K, Zhu Q, Deng H, Le Y, Ouyang W, Yan X, Zhou W, Tong J (2022) Brain-penetration and neuron-targeting DNA Nanoflowers Co-delivering miR-124 and rutin for synergistic therapy of Alzheimer’s disease. Small 18:e2107534

    PubMed  Google Scholar 

  • Panni S, Lovering RC, Porras P, Orchard S (2020) Non-coding RNA regulatory networks. Biochim Biophys Acta Gene Regul Mech 1863:194417

    CAS  PubMed  Google Scholar 

  • Perry JJ, Stiell IG, Sivilotti ML, Bullard MJ, Emond M, Symington C, Sutherland J, Worster A, Hohl C, Lee JS, Eisenhauer MA, Mortensen M, Mackey D, Pauls M, Lesiuk H, Wells GA (2011) Sensitivity of computed tomography performed within six hours of onset of headache for diagnosis of subarachnoid haemorrhage: prospective cohort study. BMJ 343:d4277

    PubMed  PubMed Central  Google Scholar 

  • Renthal W, Tochitsky I, Yang L, Cheng YC, Li E, Kawaguchi R, Geschwind DH, Woolf CJ (2020) Transcriptional reprogramming of distinct peripheral sensory neuron subtypes after axonal injury. Neuron 108:128-144 e129

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Pulido L, Ponting CP (2022) OAF: a new member of the BRICHOS family. Bioinform Adv 2:vbac087

    PubMed  PubMed Central  Google Scholar 

  • Saraiva C, Paiva J, Santos T, Ferreira L, Bernardino L (2016) MicroRNA-124 loaded nanoparticles enhance brain repair in Parkinson’s disease. J Control Release 235:291–305

    CAS  PubMed  Google Scholar 

  • Sonntag KC, Woo TU, Krichevsky AM (2012) Converging miRNA functions in diverse brain disorders: a case for miR-124 and miR-126. Exp Neurol 235:427–435

    CAS  PubMed  Google Scholar 

  • Specht E, Kaemmerer D, Sanger J, Wirtz RM, Schulz S, Lupp A (2015) Comparison of immunoreactive score, HER2/neu score and H score for the immunohistochemical evaluation of somatostatin receptors in bronchopulmonary neuroendocrine neoplasms. Histopathology 67:368–377

    PubMed  Google Scholar 

  • Stylli SS, Adamides AA, Koldej RM, Luwor RB, Ritchie DS, Ziogas J, Kaye AH (2017) miRNA expression profiling of cerebrospinal fluid in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg 126:1131–1139

    CAS  PubMed  Google Scholar 

  • Sugawara T, Ayer R, Jadhav V, Zhang JH (2008) A new grading system evaluating bleeding scale in filament perforation subarachnoid hemorrhage rat model. J Neurosci Methods 167:327–334

    PubMed  Google Scholar 

  • Sun Y, Gui H, Li Q, Luo ZM, Zheng MJ, Duan JL, Liu X (2013) MicroRNA-124 protects neurons against apoptosis in cerebral ischemic stroke. CNS Neurosci Ther 19:813–819

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang Y, Yu S, Liu Y, Zhang J, Han L, Xu Z (2017) MicroRNA-124 controls human vascular smooth muscle cell phenotypic switch via Sp1. Am J Physiol Heart Circ Physiol 313:H641–H649

    PubMed  Google Scholar 

  • Vlak MH, Rinkel GJ, Greebe P, van der Bom JG, Algra A (2012) Trigger factors for rupture of intracranial aneurysms in relation to patient and aneurysm characteristics. J Neurol 259:1298–1302

    PubMed  Google Scholar 

  • Wang K, Wright J (1988) Architecture of the sarcomere matrix of skeletal muscle: immunoelectron microscopic evidence that suggests a set of parallel inextensible nebulin filaments anchored at the Z line. J Cell Biol 107:2199–2212

    CAS  PubMed  Google Scholar 

  • Wang C, Feng T, Wan Q, Kong Y, Yuan L (2014a) miR-124 controls Drosophila behavior and is required for neural development. Int J Dev Neurosci 38:105–112

    CAS  PubMed  Google Scholar 

  • Wang D, Zhang H, Li M, Frid MG, Flockton AR, McKeon BA, Yeager ME, Fini MA, Morrell NW, Pullamsetti SS, Velegala S, Seeger W, McKinsey TA, Sucharov CC, Stenmark KR (2014b) MicroRNA-124 controls the proliferative, migratory, and inflammatory phenotype of pulmonary vascular fibroblasts. Circ Res 114:67–78

    CAS  PubMed  Google Scholar 

  • Wang G, Liu H, Wei Z, Jia H, Liu Y, Liu J (2017) Systematic analysis of the molecular mechanism of microRNA-124 in hepatoblastoma cells. Oncol Lett 14:7161–7170

    PubMed  PubMed Central  Google Scholar 

  • Wang SW, Deng LX, Chen HY, Su ZQ, Ye SL, Xu WY (2018) MiR-124 affects the apoptosis of brain vascular endothelial cells and ROS production through regulating PI3K/AKT signaling pathway. Eur Rev Med Pharmacol Sci 22:498–505

    PubMed  Google Scholar 

  • Weng H, Shen C, Hirokawa G, Ji X, Takahashi R, Shimada K, Kishimoto C, Iwai N (2011) Plasma miR-124 as a biomarker for cerebral infarction. Biomed Res 32:135–141

    CAS  PubMed  Google Scholar 

  • Xie GB, Wang CX, Zhou CH, Li H, Zhang XS, Zhou XM, Zhang L, Hang CH, Zhou ML, Shi JX (2015) Expression of cytoplasmic gelsolin in rat brain after experimental subarachnoid hemorrhage. Cell Mol Neurobiol 35:723–731

    CAS  PubMed  Google Scholar 

  • Xiong L, Zhou H, Zhao Q, Xue L, Al-Hawwas M, He J, Wu M, Zou Y, Yang M, Dai J, He M, Wang T (2020) Overexpression of miR-124 protects against neurological dysfunction induced by neonatal hypoxic-ischemic brain injury. Cell Mol Neurobiol 40:737–750

    CAS  PubMed  Google Scholar 

  • Xiong L, Zhou H, Zhao Q, Xue L, Al-Hawwas M, He J, Wu M, Zou Y, Yang M, Dai J, He M, Wang T (2022) Correction to: overexpression of miR-124 protects against neurological dysfunction induced by neonatal hypoxic-ischemic brain injury. Cell Mol Neurobiol 42:1261–1263

    PubMed  Google Scholar 

  • Yang H, Han M, Li J, Ke H, Kong Y, Wang W, Wang L, Ma W, Qiu J, Wang X, Xin T, Liu H (2022) Delivery of miRNAs through metal-organic framework nanoparticles for assisting neural stem cell therapy for ischemic stroke. ACS Nano 16:14503–14516

    CAS  PubMed  Google Scholar 

  • Yu L, Hsieh YC, Pearse RV, Wang Y, Petyuk VA, Schneider JA, Buchman AS, Seyfried NT, De Jager PL, Young-Pearse TL, Bennett DA (2022) Association of AK4 protein from stem cell-derived neurons with cognitive reserve: an autopsy study. Neurology 99:e2264–e2274

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Laux A, Stenmark KR, Hu CJ (2021) Mechanisms contributing to the dysregulation of miRNA-124 in pulmonary hypertension. Int J Mol Sci 22:3852

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, He Z, Wang J (2021) MicroRNA-124: a key player in microglia-mediated inflammation in neurological diseases. Front Cell Neurosci 15:771898

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu H, Wang J, Shao Y, Wan D (2019) Catalpol may improve axonal growth via regulating miR-124 regulated PI3K/AKT/mTOR pathway in neurons after ischemia. Ann Transl Med 7:306

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This work was funded by the National Natural Science Foundation of China (No. 81971133).

Author information

Authors and Affiliations

Authors

Contributions

GBL and LGC contributed to the conception of the study and perform constructive discussions; JW performed the data collection and analysis; JW, QGJ and HXM wrote the manuscript; SH, KYZ and SJB contributed to data analysis and manuscript preparation.

Corresponding authors

Correspondence to Ligang Chen or Guobiao Liang.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Ethical approval and consent to participate

Informed consent was obtained from all patients. This study was ethically approved by the Northern Theater General Hospital Ethics Committee (approve number: 2020–024).

Consent for publication

All authors in this study have read the manuscript and approved to publication.

Additional information

Communicated by Sreedharan Sajikumar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

221_2023_6682_MOESM1_ESM.tif

Supplementary file1 (TIF 13688 KB) Supplementary Figure 1. (A) Expression of AK4 and ATF3 in miR-124 mimic neurons. (B) Biological Process GO enrichment map of down-regulated proteins in SAH vs non-SAH. (C) Molecular Function GO enrichment map of down-regulated protein molecular function in down-regulated proteins in SAH vs non-SAH.

Supplementary file2 (DOCX 35 KB)

Supplementary file3 (DOCX 42 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, W., Jia, Q., Ma, H. et al. MicroRNA-124 conducts neuroprotective effect via inhibiting AK4/ATF3 after subarachnoid hemorrhage. Exp Brain Res 242, 33–45 (2024). https://doi.org/10.1007/s00221-023-06682-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-023-06682-x

Keywords

Navigation