Skip to main content

Cognition effectiveness of continuous positive airway pressure treatment in obstructive sleep apnea syndrome patients with cognitive impairment: a meta-analysis

Abstract

Obstructive sleep apnea (OSA) is a common respiratory disorder characterized by recurrent pharyngeal collapses during sleep leading to intermittent hypoxia and sleep disruption. Cognitive challenges and high risks of cognitive impairment, including Alzheimer’s disease (AD), are closely associated with OSA. Currently, continuous positive airway pressure (CPAP) is widely used in the treatment of OSA. However, whether CPAP benefits cognitive functions in patients with OSA remains elusive. Here, we identified published studies through a systematic review of PubMed, Cochrane Library, Embase, Wanfang Data, CBM, and CNKI from January 1, 1970, to July 1, 2020. 288 patients from 7 articles (one was excluded in the meta-analysis for it was a follow-up study) were included in the present study. It revealed that cognitive functions of OSA patients with mild cognitive impairment (MCI) or AD were mildly but significantly improved after CPAP treatment (SMD 0.49, 95% CI 0.11–0.86), especially long-term CPAP treatment (SMD 0.56, 95% CI 0.10–1.02, p = 0.02), as measured by Mini-Mental State Examination (MMSE) (SMD 0.49, 95%CI 0.11–0.86). However, no significant cognition benefits were detected by the Montreal Cognitive Assessment (SMD 0.43, 95% CI 0.85–1.72). In terms of heterogeneity, cognitive improvements by CPAP were detectable on OSA patients either at a younger age or over longer periods of CPAP treatment. Therefore, our findings highlight the partial efficiency of CPAP treatment in cognition improvement of OSA patients with MCI or AD.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Availability of data and materials

All data generated or analyzed during this study are included in the submitted article and its supplementary files.

Code availability

All data and code generated or used during this study appear in the submitted article and its supplementary files.

References

  1. Alzheimer’s Association (2020) 2020 Alzheimer's disease facts and figures. Alzheimer's Dement. https://doi.org/10.1002/alz.12068

  2. Albert MS, DeKosky ST, Dickson D et al (2011) The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:270–279. https://doi.org/10.1016/j.jalz.2011.03.008

    Article  PubMed  PubMed Central  Google Scholar 

  3. Aloia MS, Arnedt JT, Davis JD, Riggs RL, Byrd D (2004) Neuropsychological sequelae of obstructive sleep apnea-hypopnea syndrome: a critical review. J Int Neuropsychol Soc 10:772–785. https://doi.org/10.1017/s1355617704105134

    Article  PubMed  Google Scholar 

  4. Ancoli-Israel S, Palmer BW, Cooke JR et al (2008) Cognitive effects of treating obstructive sleep apnea in Alzheimer’s disease: a randomized controlled study. J Am Geriatr Soc 56:2076–2081. https://doi.org/10.1111/j.1532-5415.2008.01934.x

    Article  PubMed  PubMed Central  Google Scholar 

  5. Andrade AG, Bubu OM, Varga AW, Osorio RS (2018) The relationship between obstructive sleep apnea and Alzheimer’s disease. J Alzheimers Dis 64:S255-s270. https://doi.org/10.3233/jad-179936

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ayalon L, Ancoli-Israel S, Aka AA, McKenna BS, Drummond SP (2009) Relationship between obstructive sleep apnea severity and brain activation during a sustained attention task. Sleep 32:373–381. https://doi.org/10.1093/sleep/32.3.373

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bäckman L, Jones S, Berger AK, Laukka EJ, Small BJ (2004) Multiple cognitive deficits during the transition to Alzheimer’s disease. J Intern Med 256:195–204. https://doi.org/10.1111/j.1365-2796.2004.01386.x

    Article  PubMed  Google Scholar 

  8. Biessels GJ, Staekenborg S, Brunner E, Brayne C, Scheltens P (2006) Risk of dementia in diabetes mellitus: a systematic review. Lancet Neurol 5:64–74. https://doi.org/10.1016/S1474-4422(05)70284-2

    Article  PubMed  Google Scholar 

  9. Billings ME, Auckley D, Benca R et al (2011) Race and residential socioeconomics as predictors of CPAP adherence. Sleep 34:1653–1658. https://doi.org/10.5665/sleep.1428

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bilyukov RG, Nikolov MS, Pencheva VP, Petrova DS, Georgiev OB, Mondeshki TL, Milanova VK (2018) Cognitive impairment and affective disorders in patients with obstructive sleep apnea syndrome. Front Psychiatry 9:357. https://doi.org/10.3389/fpsyt.2018.00357

    Article  PubMed  PubMed Central  Google Scholar 

  11. Blackman J, Swirski M, Clynes J, Harding S, Leng Y, Coulthard E (2020) Pharmacological and non-pharmacological interventions to enhance sleep in mild cognitive impairment and mild Alzheimer’s disease: a systematic review. J Sleep Res. https://doi.org/10.1111/jsr.13229

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bradley TD, Floras JS (2009) Obstructive sleep apnoea and its cardiovascular consequences. Lancet 373:82–93. https://doi.org/10.1016/s0140-6736(08)61622-0

    Article  PubMed  Google Scholar 

  13. Bubu OM, Brannick M, Mortimer J et al (2017) Sleep, cognitive impairment, and Alzheimer’s disease: a systematic review and meta-analysis. Sleep. https://doi.org/10.1093/sleep/zsw032

    Article  PubMed  Google Scholar 

  14. Bubu OM, Andrade AG, Umasabor-Bubu OQ et al (2020) Obstructive sleep apnea, cognition and Alzheimer’s disease: a systematic review integrating three decades of multidisciplinary research. Sleep Med Rev. https://doi.org/10.1016/j.smrv.2019.101250

    Article  PubMed  Google Scholar 

  15. Buratti L, Viticchi G, Falsetti L et al (2014) Vascular impairment in Alzheimer’s disease: the role of obstructive sleep apnea. J Alzheimers Dis 38:445–453. https://doi.org/10.3233/jad-131046

    Article  PubMed  Google Scholar 

  16. Buratti L, Viticchi G, Baldinelli S et al (2017) Sleep apnea, cognitive profile, and vascular changes: an intriguing relationship. J Alzheimers Dis 60:1195–1203. https://doi.org/10.3233/jad-170445

    Article  PubMed  Google Scholar 

  17. Cao MT, Sternbach JM, Guilleminault C (2017) Continuous positive airway pressure therapy in obstuctive sleep apnea: benefits and alternatives. Expert Rev Respir Med 11:259–272. https://doi.org/10.1080/17476348.2017.1305893

    CAS  Article  PubMed  Google Scholar 

  18. Carpagnano GE, Kharitonov SA, Resta O, Foschino-Barbaro MP, Gramiccioni E, Barnes PJ (2002) Increased 8-isoprostane and interleukin-6 in breath condensate of obstructive sleep apnea patients. Chest 122:1162–1167. https://doi.org/10.1378/chest.122.4.1162

    CAS  Article  PubMed  Google Scholar 

  19. Castronovo V, Canessa N, Strambi LF et al (2009) Brain activation changes before and after PAP treatment in obstructive sleep apnea. Sleep 32:1161–1172. https://doi.org/10.1093/sleep/32.9.1161

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chen X, Wang R, Zee P et al (2015) Racial/ethnic differences in sleep disturbances: the multi-ethnic study of atherosclerosis (MESA). Sleep 38:877–888. https://doi.org/10.5665/sleep.4732

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chong MS, Ayalon L, Marler M et al (2006) Continuous positive airway pressure reduces subjective daytime sleepiness in patients with mild to moderate Alzheimer’s disease with sleep disordered breathing. J Am Geriatr Soc 54:777–781. https://doi.org/10.1111/j.1532-5415.2006.00694.x

    Article  PubMed  Google Scholar 

  22. Cooke JR, Ayalon L, Palmer BW et al (2009) Sustained use of CPAP slows deterioration of cognition, sleep, and mood in patients with Alzheimer’s disease and obstructive sleep apnea: a preliminary study. J Clin Sleep Med 5:305–309

    Article  Google Scholar 

  23. Dalmases M, Torres M, Márquez-Kisinousky L et al (2014) Brain tissue hypoxia and oxidative stress induced by obstructive apneas is different in young and aged rats. Sleep 37:1249–1256. https://doi.org/10.5665/sleep.3848

    Article  PubMed  PubMed Central  Google Scholar 

  24. Dalmases M, Solé-Padullés C, Torres M et al (2015) Effect of CPAP on cognition, brain function, and structure among elderly patients with OSA: a randomized pilot study. Chest 148:1214–1223. https://doi.org/10.1378/chest.15-0171

    Article  PubMed  Google Scholar 

  25. Daurat A, Sarhane M, Tiberge M (2016) Obstructive sleep apnea syndrome and cognition: a review. Neurophysiol Clin 46:201–215. https://doi.org/10.1016/j.neucli.2016.04.002

    Article  PubMed  Google Scholar 

  26. Du J, Li Q, Ren L, Weng Q, Xu L (2013) Evaluate the therapeutic efficacy and analysis related factor with the old patients of cognitive impairment combined with obstructive sleep apnea hypopnea syndrome. J Aerosp Med 24:917–921. https://doi.org/10.3969/j.issn.2095-1434.2013.08.009

    Article  Google Scholar 

  27. Duron E, Hanon O (2008) Vascular risk factors, cognitive decline, and dementia. Vasc Health Risk Manag 4:363–381. https://doi.org/10.2147/vhrm.s1839

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Elias A, Cummins T, Tyrrell R et al (2018) Risk of Alzheimer’s disease in obstructive sleep apnea syndrome: amyloid-beta and tau imaging. J Alzheimers Dis 66:733–741. https://doi.org/10.3233/JAD-180640

    CAS  Article  PubMed  Google Scholar 

  29. Ferini-Strambi L, Lombardi GE, Marelli S, Galbiati A (2017) Neurological deficits in obstructive sleep apnea. Curr Treat Options Neurol 19:16. https://doi.org/10.1007/s11940-017-0451-8

    Article  PubMed  Google Scholar 

  30. Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198. https://doi.org/10.1016/0022-3956(75)90026-6

    CAS  Article  PubMed  Google Scholar 

  31. Guglielmi O, Lanteri P, Garbarino S (2019) Association between socioeconomic status, belonging to an ethnic minority and obstructive sleep apnea: a systematic review of the literature. Sleep Med 57:100–106. https://doi.org/10.1016/j.sleep.2019.01.042

    Article  PubMed  Google Scholar 

  32. Isono S, Remmers JE, Tanaka A, Sho Y, Sato J, Nishino T (1997) Anatomy of pharynx in patients with obstructive sleep apnea and in normal subjects. J Appl Physiol (1985) 82:1319–1326. https://doi.org/10.1152/jappl.1997.82.4.1319

    CAS  Article  Google Scholar 

  33. Jorge C, Benítez I, Torres G et al (2019) The STOP-Bang and Berlin questionnaires to identify obstructive sleep apnoea in Alzheimer’s disease patients. Sleep Med 57:15–20. https://doi.org/10.1016/j.sleep.2019.01.033

    Article  PubMed  Google Scholar 

  34. Ju YE, Finn MB, Sutphen CL et al (2016) Obstructive sleep apnea decreases central nervous system-derived proteins in the cerebrospinal fluid. Ann Neurol 80:154–159. https://doi.org/10.1002/ana.24672

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Kaminska M, Mery VP, Lafontaine AL, Robinson A, Benedetti A, Gros P, Kimoff RJ (2018) Change in cognition and other non-motor symptoms with obstructive sleep apnea treatment in Parkinson disease. J Clin Sleep Med 14:819–828. https://doi.org/10.5664/jcsm.7114

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kerner NA, Roose SP (2016) Obstructive sleep apnea is linked to depression and cognitive impairment: evidence and potential mechanisms. Am J Geriatr Psychiatry 24:496–508. https://doi.org/10.1016/j.jagp.2016.01.134

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kielb SA, Ancoli-Israel S, Rebok GW, Spira AP (2012) Cognition in obstructive sleep apnea-hypopnea syndrome (OSAS): current clinical knowledge and the impact of treatment. NeuroMol Med 14:180–193. https://doi.org/10.1007/s12017-012-8182-1

    CAS  Article  Google Scholar 

  38. Kiviniemi V, Wang X, Korhonen V et al (2016) Ultra-fast magnetic resonance encephalography of physiological brain activity—glymphatic pulsation mechanisms? J Cereb Blood Flow Metab 36:1033–1045. https://doi.org/10.1177/0271678x15622047

    CAS  Article  PubMed  Google Scholar 

  39. Koo DL, Kim HR, Kim H, Seong JK, Joo EY (2020) White matter tract-specific alterations in male patients with untreated obstructive sleep apnea are associated with worse cognitive function. Sleep. https://doi.org/10.1093/sleep/zsz247

    Article  PubMed  Google Scholar 

  40. Krajcovicova L, Klobusiakova P, Rektorova I (2019) Gray matter changes in Parkinson’s and Alzheimer’s disease and relation to cognition. Curr Neurol Neurosci Rep 19:85. https://doi.org/10.1007/s11910-019-1006-z

    Article  PubMed  PubMed Central  Google Scholar 

  41. Langa KM, Levine DA (2014) The diagnosis and management of mild cognitive impairment: a clinical review. JAMA 312:2551–2561. https://doi.org/10.1001/jama.2014.13806

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Liguori C, Mercuri NB, Izzi F, Romigi A, Cordella A, Sancesario G, Placidi F (2017) Obstructive sleep apnea is associated with early but possibly modifiable Alzheimer’s disease biomarkers changes. Sleep 40:01. https://doi.org/10.1093/sleep/zsx011

    Article  Google Scholar 

  43. Liguori C, Maestri M, Spanetta M, Placidi F, Bonanni E, Mercuri NB, Guarnieri B (2021) Sleep-disordered breathing and the risk of Alzheimer’s disease. Sleep Med Rev 55:101375. https://doi.org/10.1016/j.smrv.2020.101375

    Article  PubMed  Google Scholar 

  44. Lim W, Bardwell WA, Loredo JS et al (2007) Neuropsychological effects of 2-week continuous positive airway pressure treatment and supplemental oxygen in patients with obstructive sleep apnea: a randomized placebo-controlled study. J Clin Sleep Med 3:380–386

    Article  Google Scholar 

  45. Lim AS, Kowgier M, Yu L, Buchman AS, Bennett DA (2013) Sleep fragmentation and the risk of incident Alzheimer’s disease and cognitive decline in older persons. Sleep 36:1027–1032. https://doi.org/10.5665/sleep.2802

    Article  PubMed  PubMed Central  Google Scholar 

  46. Long JM, Holtzman DM (2019) Alzheimer disease: an update on pathobiology and treatment strategies. Cell 179:312–339. https://doi.org/10.1016/j.cell.2019.09.001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Ma T, Han Y, Li D, Wang B, Wang Z (2019) Impact of continuous positive airway pressure ventilation on OSAHS patients complicated with mild cognitive impairment. Pract J Cardiac Cereb Pneumal Vasc Dis 27:93–98. https://doi.org/10.3969/j.issn.1008-5971.2019.05.020

    CAS  Article  Google Scholar 

  48. McKhann GM, Knopman DS, Chertkow H et al (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:263–269. https://doi.org/10.1016/j.jalz.2011.03.005

    Article  PubMed  PubMed Central  Google Scholar 

  49. McMillan A, Bratton DJ, Faria R et al (2014) Continuous positive airway pressure in older people with obstructive sleep apnoea syndrome (PREDICT): a 12-month, multicentre, randomised trial. Lancet Respir Med 2:804–812. https://doi.org/10.1016/s2213-2600(14)70172-9

    Article  PubMed  Google Scholar 

  50. Nasreddine ZS, Phillips NA, Bédirian V et al (2005) The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 53:695–699. https://doi.org/10.1111/j.1532-5415.2005.53221.x

    Article  Google Scholar 

  51. Ng KM, Lau CF, Fung ML (2010) Melatonin reduces hippocampal beta-amyloid generation in rats exposed to chronic intermittent hypoxia. Brain Res 1354:163–171. https://doi.org/10.1016/j.brainres.2010.07.044

    CAS  Article  PubMed  Google Scholar 

  52. O’Bryant SE, Humphreys JD, Smith GE, Ivnik RJ, Graff-Radford NR, Petersen RC, Lucas JA (2008) Detecting dementia with the mini-mental state examination in highly educated individuals. Arch Neurol 65:963–967. https://doi.org/10.1001/archneur.65.7.963

    Article  PubMed  PubMed Central  Google Scholar 

  53. O’Hara R, Schröder CM, Kraemer HC et al (2005) Nocturnal sleep apnea/hypopnea is associated with lower memory performance in APOE epsilon4 carriers. Neurology 65:642–644. https://doi.org/10.1212/01.wnl.0000173055.75950.bf

    CAS  Article  PubMed  Google Scholar 

  54. Osorio RS, Ayappa I, Mantua J et al (2014) Interaction between sleep-disordered breathing and apolipoprotein E genotype on cerebrospinal fluid biomarkers for Alzheimer’s disease in cognitively normal elderly individuals. Neurobiol Aging 35:1318–1324. https://doi.org/10.1016/j.neurobiolaging.2013.12.030

    CAS  Article  PubMed  Google Scholar 

  55. Osorio RS, Gumb T, Pirraglia E et al (2015) Sleep-disordered breathing advances cognitive decline in the elderly. Neurology 84:1964–1971. https://doi.org/10.1212/WNL.0000000000001566

    Article  PubMed  PubMed Central  Google Scholar 

  56. Page MJ, McKenzie JE, Bossuyt PM et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:n71. https://doi.org/10.1136/bmj.n71

    Article  PubMed  PubMed Central  Google Scholar 

  57. Peppard PE, Young T, Palta M, Skatrud J (2000) Prospective study of the association between sleep-disordered breathing and hypertension. N Engl J Med 342:1378–1384. https://doi.org/10.1056/nejm200005113421901

    CAS  Article  PubMed  Google Scholar 

  58. Peppard PE, Young T, Barnet JH, Palta M, Hagen EW, Hla KM (2013) Increased prevalence of sleep-disordered breathing in adults. Am J Epidemiol 177:1006–1014. https://doi.org/10.1093/aje/kws342

    Article  PubMed  PubMed Central  Google Scholar 

  59. Perez-Cabezas V, Ruiz-Molinero C, Jimenez-Rejano JJ, Gonzalez-Medina G, Galan-Mercant A, Martin-Valero R (2020) Continuous positive airway pressure treatment in patients with Alzheimer’s disease: a systematic review. J Clin Med. https://doi.org/10.3390/jcm9010181

    Article  PubMed  PubMed Central  Google Scholar 

  60. Petrovitch H, White LR, Izmirilian G et al (2000) Midlife blood pressure and neuritic plaques, neurofibrillary tangles, and brain weight at death: the HAAS☆. Neurobiol Aging 21:57–62. https://doi.org/10.1016/S0197-4580(00)00106-8

    CAS  Article  PubMed  Google Scholar 

  61. Proust-Lima C, Amieva H, Dartigues JF, Jacqmin-Gadda H (2007) Sensitivity of four psychometric tests to measure cognitive changes in brain aging-population-based studies. Am J Epidemiol 165:344–350. https://doi.org/10.1093/aje/kwk017

    Article  PubMed  Google Scholar 

  62. Quintero M, Olea E, Conde SV et al (2016) Age protects from harmful effects produced by chronic intermittent hypoxia. J Physiol 594:1773–1790. https://doi.org/10.1113/jp270878

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. Randerath W, Bassetti CL, Bonsignore MR et al (2018) Challenges and perspectives in obstructive sleep apnoea: report by an ad hoc working group of the Sleep Disordered Breathing Group of the European Respiratory Society and the European Sleep Research Society. Eur Respir J. https://doi.org/10.1183/13993003.02616-2017

    Article  PubMed  Google Scholar 

  64. Ratnavadivel R, Stadler D, Windler S, Bradley J, Paul D, McEvoy RD, Catcheside PG (2010) Upper airway function and arousability to ventilatory challenge in slow wave versus stage 2 sleep in obstructive sleep apnoea. Thorax 65:107–112. https://doi.org/10.1136/thx.2008.112953

    Article  PubMed  Google Scholar 

  65. Ren L, Wang K, Shen H, Xu Y, Wang J, Chen R (2019) Effects of continuous positive airway pressure (CPAP) therapy on neurological and functional rehabilitation in Basal Ganglia Stroke patients with obstructive sleep apnea: A prospective multicenter study. Medicine (baltimore) 98:e16344. https://doi.org/10.1097/md.0000000000016344

    Article  Google Scholar 

  66. Resnick HE, Redline S, Shahar E et al (2003) Diabetes and sleep disturbances: findings from the Sleep Heart Health Study. Diabetes Care 26:702–709. https://doi.org/10.2337/diacare.26.3.702

    Article  PubMed  Google Scholar 

  67. Richards KC, Gooneratne N, Dicicco B et al (2019) CPAP adherence may slow 1-year cognitive decline in older adults with mild cognitive impairment and apnea. J Am Geriatr Soc 67:558–564. https://doi.org/10.1111/jgs.15758

    Article  PubMed  PubMed Central  Google Scholar 

  68. Sacks D, Baxter B, Campbell BCV et al (2018) Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke. Int J Stroke 13:612–632. https://doi.org/10.1177/1747493018778713

    Article  PubMed  Google Scholar 

  69. Sánchez-de-la-Torre M, Campos-Rodriguez F, Barbé F (2013) Obstructive sleep apnoea and cardiovascular disease. Lancet Respir Med 1:61–72. https://doi.org/10.1016/s2213-2600(12)70051-6

    Article  PubMed  Google Scholar 

  70. Senaratna CV, Perret JL, Lodge CJ et al (2017) Prevalence of obstructive sleep apnea in the general population: a systematic review. Sleep Med Rev 34:70–81. https://doi.org/10.1016/j.smrv.2016.07.002

    Article  PubMed  Google Scholar 

  71. Shi L, Chen SJ, Ma MY et al (2018) Sleep disturbances increase the risk of dementia: a systematic review and meta-analysis. Sleep Med Rev 40:4–16. https://doi.org/10.1016/j.smrv.2017.06.010

    Article  PubMed  Google Scholar 

  72. Siachpazidou DI, Stavrou VT, Astara K et al (2020) Alzheimer’s disease in patients with obstructive sleep apnea syndrome. Tanaffos 19:176–185

    PubMed  PubMed Central  Google Scholar 

  73. Siqueira GSA, Hagemann PMS, Coelho DS, Santos FHD, Bertolucci PHF (2019) Can MoCA and MMSE be interchangeable cognitive screening tools? A systematic review. Gerontologist 59:e743–e763. https://doi.org/10.1093/geront/gny126

    Article  PubMed  Google Scholar 

  74. Skaper SD, Facci L, Zusso M, Giusti P (2017) Synaptic Plasticity, dementia and Alzheimer disease. CNS Neurol Disord Drug Targets 16:220–233. https://doi.org/10.2174/1871527316666170113120853

    CAS  Article  PubMed  Google Scholar 

  75. Thomas RJ, Rosen BR, Stern CE, Weiss JW, Kwong KK (2005) Functional imaging of working memory in obstructive sleep-disordered breathing. J Appl Physiol (1985) 98:2226–2234. https://doi.org/10.1152/japplphysiol.01225.2004

    Article  Google Scholar 

  76. Torelli F, Moscufo N, Garreffa G et al (2011) Cognitive profile and brain morphological changes in obstructive sleep apnea. Neuroimage 54:787–793. https://doi.org/10.1016/j.neuroimage.2010.09.065

    Article  PubMed  Google Scholar 

  77. Troussière AC, Charley CM, Salleron J et al (2014) Treatment of sleep apnoea syndrome decreases cognitive decline in patients with Alzheimer’s disease. J Neurol Neurosurg Psychiatry 85:1405–1408. https://doi.org/10.1136/jnnp-2013-307544

    Article  PubMed  Google Scholar 

  78. Trzepizur W, Le Vaillant M, Meslier N et al (2013) Independent association between nocturnal intermittent hypoxemia and metabolic dyslipidemia. Chest 143:1584–1589. https://doi.org/10.1378/chest.12-1652

    CAS  Article  PubMed  Google Scholar 

  79. Tsivgoulis G, Zhang Y, Alexandrov AW et al (2011) Safety and tolerability of early noninvasive ventilatory correction using bilevel positive airway pressure in acute ischemic stroke. Stroke 42:1030–1034. https://doi.org/10.1161/strokeaha.110.600221

    Article  PubMed  Google Scholar 

  80. van Sinderen K, Schwarte LA, Schober P (2020) Diagnostic criteria of postoperative cognitive dysfunction: a focused systematic review. Anesthesiol Res Pract 2020:7384394. https://doi.org/10.1155/2020/7384394

    Article  PubMed  PubMed Central  Google Scholar 

  81. Villaneuva AT, Buchanan PR, Yee BJ, Grunstein RR (2005) Ethnicity and obstructive sleep apnoea. Sleep Med Rev 9:419–436. https://doi.org/10.1016/j.smrv.2005.04.005

    Article  PubMed  Google Scholar 

  82. Wang G, Goebel JR, Li C, Hallman HG, Gilford TM, Li W (2019) Therapeutic effects of CPAP on cognitive impairments associated with OSA. J Neurol. https://doi.org/10.1007/s00415-019-09381-2

    Article  PubMed  PubMed Central  Google Scholar 

  83. Wang Y, Ai L, Luo J et al (2017) Effect of adherence on daytime sleepiness, fatigue, depression and sleep quality in the obstructive sleep apnea/hypopnea syndrome patients undertaking nasal continuous positive airway pressure therapy. Patient Prefer Adherence 11:769–779. https://doi.org/10.2147/ppa.S128217

    Article  PubMed  PubMed Central  Google Scholar 

  84. Wang Y, Cheng C, Moelter S et al (2020) One year of CPAP adherence improves cognition in older adults with mild apnea and mild cognitive impairment. Nurs Res 09:09. https://doi.org/10.1097/NNR.0000000000000420

    Article  Google Scholar 

  85. Weaver TE, Maislin G, Dinges DF et al (2007) Relationship between hours of CPAP use and achieving normal levels of sleepiness and daily functioning. Sleep 30:711–719. https://doi.org/10.1093/sleep/30.6.711

    Article  PubMed  PubMed Central  Google Scholar 

  86. Williams SC, Marshall NS, Kennerson M, Rogers NL, Liu PY, Grunstein RR (2010) Modafinil effects during acute continuous positive airway pressure withdrawal: a randomized crossover double-blind placebo-controlled trial. Am J Respir Crit Care Med 181:825–831. https://doi.org/10.1164/rccm.200908-1307OC

    CAS  Article  PubMed  Google Scholar 

  87. World Health Organization (2021) Dementia fact sheet. In: World Health Organization Web. https://www.who.int/en/news-room/fact-sheets/detail/dementia

  88. Yaffe K, Laffan AM, Harrison SL et al (2011) Sleep-disordered breathing, hypoxia, and risk of mild cognitive impairment and dementia in older women. JAMA 306:613–619. https://doi.org/10.1001/jama.2011.1115

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  89. Zhang X, Zhou K, Wang R et al (2007) Hypoxia-inducible factor 1alpha (HIF-1alpha)-mediated hypoxia increases BACE1 expression and beta-amyloid generation. J Biol Chem 282:10873–10880. https://doi.org/10.1074/jbc.M608856200

    CAS  Article  PubMed  Google Scholar 

  90. Zhang Q, Qin W, He X, Li Q, Chen B, Zhang Y, Yu C (2015) Functional disconnection of the right anterior insula in obstructive sleep apnea. Sleep Med 16:1062–1070. https://doi.org/10.1016/j.sleep.2015.04.018

    Article  PubMed  Google Scholar 

  91. Zimmerman ME, Arnedt JT, Stanchina M, Millman RP, Aloia MS (2006) Normalization of memory performance and positive airway pressure adherence in memory-impaired patients with obstructive sleep apnea. Chest 130:1772–1778. https://doi.org/10.1378/chest.130.6.1772

    Article  PubMed  Google Scholar 

  92. Zinchuk A, Yaggi HK (2020) Phenotypic subtypes of OSA: a challenge and opportunity for precision medicine. Chest 157:403–420. https://doi.org/10.1016/j.chest.2019.09.002

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This is a part of the National College Students Innovation and Entrepreneurship Training Program of Zicong Wang and Xinzhao Jiang. We thank all the participants for their willingness to participate in the study.

Funding

This study was funded by National College Students Innovation and Entrepreneurship Training Program (Grant number: S202010487038).

Author information

Affiliations

Authors

Contributions

XJ and ZW contribute equally to this work. At present, they are studying at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, and Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, respectively. The idea for the article was raised by XJ and NH. The literature search and data analysis were performed by XJ and ZW. The first draft of the manuscript was written by XJ and ZW, and all the authors commented on previous versions of the manuscript and critically revised the work. The funding was required by ZW, XJ, and YY. This work was supervised by YY, RX, and ZF.

Corresponding authors

Correspondence to Rui Xiong or Zhengqi Fu.

Ethics declarations

Conflict of interest

All the authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Bill J Yates.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 13 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Wang, Z., Hu, N. et al. Cognition effectiveness of continuous positive airway pressure treatment in obstructive sleep apnea syndrome patients with cognitive impairment: a meta-analysis. Exp Brain Res (2021). https://doi.org/10.1007/s00221-021-06225-2

Download citation

Keywords

  • Obstructive sleep apnea syndrome
  • Continuous positive airway pressure
  • Cognitive impairment
  • Alzheimer’s disease