Skip to main content

Dynamics of coherent activity between cortical areas defines a two-stage process of top-down attention

Abstract

Analysing a visual scene requires the brain to briefly keep in memory potentially relevant items of that scene and then direct attention to their locations for detailed processing. To reveal the neuronal basis of the underlying working memory and top-down attention processes, we trained macaques to match two patterns presented with a delay between them. As the above processes are likely to require communication between brain regions, and the parietal cortex is known to be involved in spatial attention, we simultaneously recorded neuronal activities from the interconnected parietal and middle temporal areas. We found that mnemonic information about features of the first pattern was retained in coherent oscillating activity between the two areas in high-frequency bands, followed by coherent activity in lower frequency bands mediating top-down attention on the relevant spatial location. Oscillations maintaining featural information also modulated activity of the cells of the parietal cortex that mediate attention. This could potentially enable transfer of information to organize top-down signals necessary for selective attention. Our results provide evidence in support of a two-stage model of visual attention where the first stage involves creating a saliency map representing a visual scene and at the second stage attentional feedback is provided to cortical areas involved in detailed analysis of the attended parts of a scene.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability

All data that are not presented in manuscript are available from the corresponding author upon reasonable request.

References

  1. Baizer JS, Ungerleider LG, Desimone R (1991) Organization of visual inputs to the inferior temporal and posterior parietal cortex in macaques. J Neurosci 11(1):168–190

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. Bisley JW, Goldberg ME (2010) Attention, intention, and priority in the parietal lobe. Annu Rev Neurosci 33:1–21

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. Bokil H, Purpura K, Schoffelen J-M, Tomson D, Mitra P (2007) Comparing spectra and coherences for groups of unequal size. J Neurosci Methods 159:337–345

    PubMed  Article  PubMed Central  Google Scholar 

  4. Bullier J (2001) Integrated model of visual processing. Brain Res Rev 36:96–107

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. Buschman TJ, Miller EK (2007) Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science 315:1860–1962

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. Buzsáki G (2006) Rhythms in the brain. Oxford University Press

    Book  Google Scholar 

  7. Buzsáki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304:1926–1929

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  8. Buzsáki G, Logothetis N, Singer W (2013) Scaling brain size, keeping timing: evolutionary preservation of brain rhythms. Neuron 80:751–764

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  9. Fries P (2005) A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci 9:474–480

    PubMed  Article  PubMed Central  Google Scholar 

  10. Funahashi S, Bruce CJ, Goldman-Rakic PS (1989) Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. J Neurophysiol 61:331–349

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. Gregoriou GG, Gotts SJ, Zhou H, Desimone R (2009) Long-range neural coupling through synchronization with attention. Science 176:35–45

    Google Scholar 

  12. Hawellek DJ, Wong YT, Pesaran B (2016) Temporal coding of reward-guided choice in the posterior parietal cortex. Proc Nat Acad Sci 113:13492–13497

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. Herrington TM, Assad JA (2010) Temporal sequence of attentional modulation in the lateral intraparietal area and middle temporal area during rapid covert shifts of ateetntion. J Neurosci 30(9):3287–3296

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. Hutcheon B, Yarom Y (2000) Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends Neurosci 23:216–222

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. Ibos G, Freedman DJ (2016) Interaction between spatial and feature attention in posterior parietal cortex. Neuron 91:931–943

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. Jarvis MR, Mitra PP (2001) Sampling properties of the spectrum and coherency of sequences of action potentials. Neural Comput 13:717–749

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. Khamechian MB, Kozyrev V, Treue S, Esghaei M, Daliri MR (2019) Routing information flow by separate neural synchrony frequencies allows for “functionally labeled lines” in higher primate cortex. Proc Natl Acad Sci USA 116:12506–12515

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. Kusunoki M, Gottlieb J, Goldberg ME (2000) The lateral intraparietal area as a salience map: the representation of abrupt onset, stimulus motion, and task relevance. Vision Res 40:1459–1468

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. Lee H, Simpson GV, Logothetis NK, Rainer G (2005) Phase locking of single neuron activity to theta oscillations during working memory in monkey extrastriate visual cortex. Neuron 45:147–156

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. Levichkina E, Saalmann YB, Vidyasagar TR (2017) Coding of spatial attention priorities and object features in the macaque lateral intraparietal cortex. Physiol Rep 5:e13136

    PubMed  PubMed Central  Article  Google Scholar 

  21. Liebe S, Hoerzer GM, Logothetis NK, Rainer G (2012) Theta coupling between V4 and prefrontal cortex predicts visual short-term memory performance. Nat Neurosci 15:456–462

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. Luczak A, McNaughton BL, Harris KD (2016) Packet-based communication in the cortex. Ann Rev Neurosci 16:745–755

    Google Scholar 

  23. Maloney RT, Jayakumar J, Levichkina E, Pigarev IN, Vidyasagar TR (2013) Information processing bottlenecks in macaque posterior parietal cortex: an attentional blink? Exp Brain Res 288:365–376

    Article  Google Scholar 

  24. Mendoza-Halliday D, Torres S, Martinez-Trujillo JC (2014) Sharp emergence of feature-selective sustained activity along the dorsal visual pathway. Nat Neurosci 17:1255–1262

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. Mitra PP, Bokil H (2008) Observed brain dynamics. Oxford University Press

    Google Scholar 

  26. Mitra PP, Pesaran B (1999) Analysis of dynamic brain imaging data. Biophys J 76:691–708

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. Nikolaev AR, van Leeuwen C (2019) Scene buildup from latent memory representations across eye movements. Front Psychol 9:2701

    PubMed  PubMed Central  Article  Google Scholar 

  28. Noguchi Y, Kakagi R (2020) Temporal codes of visual working memory in the human cerebral cortex brain rhythms assovciated with high memory capacity. Neuroimage 222:117294

    PubMed  Article  PubMed Central  Google Scholar 

  29. Ogawa T, Komatsu H (2009) Condition-dependent and condition-independent target selection in the macaque posterior parietal cortex. J Neurophysiol 101:721–736

    PubMed  Article  PubMed Central  Google Scholar 

  30. Payne L, Kounios J (2009) Coherent oscillatory networks sustain short-term memory retention. Brain Res 1247:126–132

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. Pesaran B (2010) Neural correlations, decisions, and actions. Curr Opin Neurobiol 20:166–171

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Pigarev IN, Nothdurft HC, Kastner S (1997) A reversible system for chronic recordings in macaque monkeys. J Neurosci Methods 77:157–162

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. Pigarev IN, Saalmann YB, Vidyasagar TR (2009) A minimally invasive and reversible system for chronic recordings from multiple brain sites in macaque monkeys. J Neurosci Methods 181:151–158

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. Quiroga RQ, Nadasdy Z, Ben-Shaul Y (2004) Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neural Comput 16:1661–1687

    PubMed  Article  PubMed Central  Google Scholar 

  35. Ray S, Maunsell JHR (2011) Network rhythms influence the relationship between spike-triggered local field potential and functional connectivity. J Neurosci 31:12674–121685

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. Saalmann YB, Pigarev IN, Vidyasagar TR (2007) Neural mechanisms of visual attention: how top-down feedback highlights relevant locations. Science 316:1612–1615

    CAS  PubMed  Article  Google Scholar 

  37. Scheffer-Teixeira R, Belchior H, Leao RN, Ribeiro S, Tort ABL (2013) On high-frequency field oscillations (>100Hz) and the spectral leakage of spiking activity. J Neurosci 33:1535–1539

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. Sereno AB, Maunsell JHR (1998) Shape selectivity in primate lateral intraparietal cortex. Nature 395:500–503

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. Singer W (1994) Putative functions of temporal correlations in neocortical processing. In: Davis J, Koch C (eds) Large-Scale Neuronal Theories of the Brain. MIT Press, pp 201–237

    Google Scholar 

  40. Swaminathan SK, Masse NY, Freedman DJ (2013) A comparison of lateral and medial intraparietal areas during a visual categorization task. J Neurosci 33:13157–13170

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. Toth LJ, Assad JA (2002) Dynamic coding of behaviourally relevant stimuli in parietal cortex. Nature 415:165–168

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. Verghese A, Anderson AJ, Vidyasagar TR (2013) Space, color, and direction of movement: how do they affect attention? J Vision 13(8):20

    Article  Google Scholar 

  43. Vidyasagar TR (1999) A neuronal model of attentional spotlight: parietal guiding the temporal. Brain Res Rev 30:66–76

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. Waldert S, Lemon RN, Kraskov A (2013) Influence of spiking activity on cortical local field potentials. J Physiol 591:5291–5303

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. Wolfe JM (1994) Guided Search 2.0 A revised model of visual search. Psychon Bull Rev 1:202–238

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. Zich C, Quinn AJ, Mardell LC, Wrad NS, Bestmann S (2020) Dissecting transient burst events. Trends Cogn Sci 24:784–788

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Ivan Pigarev for taking part in some of the early studies. We are grateful to Drs. Andrew Metha and Chris French for critical comments on the manuscript.

Funding

This work was supported by project grants (251600, 454676 and 628668) from the Australian National Health and Medical Research Council to T.R.V. E.L. was partly supported by ARC Centre of Excellence in Integrative Brain Function.

Author information

Affiliations

Authors

Contributions

YS and TRV conceptualised and performed the original experiments and collected the data. EL, TRV and MK conceptualised the present model. EL developed the analytical tools for studying the model. EL and MK did the bulk of the new analysis. EL and TRV wrote the original draft. All authors critically reviewed and edited the final manuscript. TRV acquired funding and administered the project.

Corresponding author

Correspondence to T. R. Vidyasagar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests or competing interests.

Ethics approval

The study was conducted as per the guidelines of the National Health and Medical Research Council Australian Code of Practice for the Care and Use of Animals for Scientific Purposes and approved by the University of Melbourne Animal Experimentation Ethics Committee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Melvyn A. Goodale.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Levichkina, E., Kermani, M., Saalmann, Y.B. et al. Dynamics of coherent activity between cortical areas defines a two-stage process of top-down attention. Exp Brain Res 239, 2767–2779 (2021). https://doi.org/10.1007/s00221-021-06166-w

Download citation

Keywords

  • Visual attention
  • Parietal cortex
  • Mid-temporal cortex
  • Oscillations
  • Primates