Skip to main content

Age-related changes in motor cortex plasticity assessed with non-invasive brain stimulation: an update and new perspectives

Abstract

It is commonly accepted that the brains capacity to change, known as plasticity, declines into old age. Recent studies have used a variety of non-invasive brain stimulation (NIBS) techniques to examine this age-related decline in plasticity in the primary motor cortex (M1), but the effects seem inconsistent and difficult to unravel. The purpose of this review is to provide an update on studies that have used different NIBS techniques to assess M1 plasticity with advancing age and offer some new perspective on NIBS strategies to boost plasticity in the ageing brain. We find that early studies show clear differences in M1 plasticity between young and older adults, but many recent studies with motor training show no decline in use-dependent M1 plasticity with age. For NIBS-induced plasticity in M1, some protocols show more convincing differences with advancing age than others. Therefore, our view from the NIBS literature is that it should not be automatically assumed that M1 plasticity declines with age. Instead, the effects of age are likely to depend on how M1 plasticity is measured, and the characteristics of the elderly population tested. We also suggest that NIBS performed concurrently with motor training is likely to be most effective at producing improvements in M1 plasticity and motor skill learning in older adults. Proposed NIBS techniques for future studies include combining multiple NIBS protocols in a co-stimulation approach, or NIBS strategies to modulate intracortical inhibitory mechanisms, in an effort to more effectively boost M1 plasticity and improve motor skill learning in older adults.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Abraham W (2008) Metaplasticity: tuning synapses and networks for plasticity. Nat Rev Neurosci 9:387–399. https://doi.org/10.1038/nrn2356

    CAS  Article  PubMed  Google Scholar 

  2. Ammann C, Spampinato D, Márquez-Ruiz J (2016) Modulating motor learning through transcranial direct-current stimulation: an integrative view. Front Psychol 7:15. https://doi.org/10.3389/fpsyg.2016.01981

    Article  Google Scholar 

  3. Antonenko D, Nierhaus T, Meinzer M, Prehn K, Thielscher A, Ittermann B, Floel A (2018) Age-dependent effects of brain stimulation on network centrality. Neuroimage 176:71–82. https://doi.org/10.1016/j.neuroimage.2018.04.038

    Article  PubMed  Google Scholar 

  4. Barker AT, Jalinous R, Freeston IL (1985) Non-invasive magnetic stimulation of human motor cortex. Lancet 1:1106–1107. https://doi.org/10.1016/s0140-6736(85)92413-4

    CAS  Article  Google Scholar 

  5. Bashir S, Perez JM, Horvath JC et al (2014) Differential effects of motor cortical excitability and plasticity in young and old individuals: a Transcranial Magnetic Stimulation (TMS) study. Front Aging Neurosci 6:111. https://doi.org/10.3389/fnagi.2014.00111

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bassolino M, Campanella M, Bove M, Pozzo T, Fadiga L (2013) Training the motor cortex by observing the actions of others during immobilization. Cereb Cortex 24:3268–3276. https://doi.org/10.1093/cercor/bht190

    Article  PubMed  PubMed Central  Google Scholar 

  7. Berghuis KM, De Rond V, Zijdewind I, Koch G, Veldman MP, Hortobagyi T (2016) Neuronal mechanisms of motor learning are age dependent. Neurobiol Aging 46:149–159. https://doi.org/10.1016/j.neurobiolaging.2016.06.013

    Article  PubMed  Google Scholar 

  8. Berghuis KMM, Semmler JG, Opie GM, Post AK, Hortobágyi T (2017) Age-related changes in corticospinal excitability and intracortical inhibition after upper extremity motor learning: a systematic review and meta-analysis. Neurobiol Aging 55:61–71. https://doi.org/10.1016/j.neurobiolaging.2017.03.024

    Article  PubMed  Google Scholar 

  9. Bergmann TO, Karabanov A, Hartwigsen G, Thielscher A, Siebner HR (2016) Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: current approaches and future perspectives. Neuroimage 140:4–19. https://doi.org/10.1016/j.neuroimage.2016.02.012

    Article  PubMed  Google Scholar 

  10. Bernard JA, Seidler RD (2012) Evidence for motor cortex dedifferentiation in older adults. Neurobiol Aging 33:1890–1899. https://doi.org/10.1016/j.neurobiolaging.2011.06.021

    Article  PubMed  Google Scholar 

  11. Bestmann S, Krakauer JW (2015) The uses and interpretations of the motor-evoked potential for understanding behaviour. Exp Brain Res 233:679–689. https://doi.org/10.1007/s00221-014-4183-7

    Article  PubMed  Google Scholar 

  12. Bhandari A, Radhu N, Farzan F, Mulsant BH, Rajji TK, Daskalakis ZJ, Blumberger DM (2016) A meta-analysis of the effects of aging on motor cortex neurophysiology assessed by transcranial magnetic stimulation. Clin Neurophysiol 127:2834–2845. https://doi.org/10.1016/j.clinph.2016.05.363

    Article  PubMed  PubMed Central  Google Scholar 

  13. Biabani M, Fornito A, Mutanen TP, Morrow J, Rogasch NC (2019) Characterizing and minimizing the contribution of sensory inputs to TMS-evoked potentials. Brain Stimul 12:1537–1552. https://doi.org/10.1016/j.brs.2019.07.009

    Article  PubMed  Google Scholar 

  14. Bolognini N, Pascual-Leone A, Fregni F (2009) Using non-invasive brain stimulation to augment motor training-induced plasticity. J Neuroeng Rehabil 6:8. https://doi.org/10.1186/1743-0003-6-8

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bouche P, Cattelin F, Saint-Jean O et al (1993) Clinical and electrophysiological study of the peripheral nervous system in the elderly. J Neurol 240:263–268. https://doi.org/10.1007/BF00838158

    CAS  Article  PubMed  Google Scholar 

  16. Buonomano DV, Merzenich MM (1998) Cortical plasticity: from synapses to maps. Ann Rev Neurosci 21:149–186. https://doi.org/10.1146/annurev.neuro.21.1.149

    CAS  Article  PubMed  Google Scholar 

  17. Butefisch CM, Davis BC, Wise SP, Sawaki L, Kopylev L, Classen J, Cohen LG (2000) Mechanisms of use-dependent plasticity in the human motor cortex. Proc Natl Acad Sci USA 97:3661–3665. https://doi.org/10.1073/pnas.050350297

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Button KS, Ioannidis JPA, Mokrysz C, Nosek BA, Flint J, Robinson ESJ, Munafò MR (2013) Power failure: why small sample size undermines the reliability of neuroscience. Nat Rev Neurosci 14:365–376. https://doi.org/10.1038/nrn3475

    CAS  Article  PubMed  Google Scholar 

  19. Cabeza R (2002) Hemispheric asymmetry reduction in older adults: the HAROLD model. Psychol Aging 17:85–100. https://doi.org/10.1037//0882-7974.17.1.85

    Article  PubMed  Google Scholar 

  20. Cash RFH, Ziemann U, Murray K, Thickbroom GW (2010) Late cortical disinhibition in human motor cortex: a triple-pulse transcranial magnetic stimulation study. J Neurophysiol 103:511–518. https://doi.org/10.1152/jn.00782.2009

    CAS  Article  PubMed  Google Scholar 

  21. Cash RFH, Ziemann U, Thickbroom GW (2011) Inhibitory and disinhibitory effects on I-wave facilitation in motor cortex. J Neurophysiol 105:100–106. https://doi.org/10.1152/jn.00650.2010

    CAS  Article  PubMed  Google Scholar 

  22. Cash RF, Murakami T, Chen R, Thickbroom GW, Ziemann U (2016) Augmenting plasticity induction in human motor cortex by disinhibition stimulation. Cereb Cortex 26:58–69. https://doi.org/10.1093/cercor/bhu176

    Article  PubMed  Google Scholar 

  23. Cirillo J, Lavender AP, Ridding MC, Semmler JG (2009) Motor cortex plasticity induced by paired associative stimulation is enhanced in physically active individuals. J Physiol 587:5831–5842. https://doi.org/10.1113/jphysiol.2009.181834

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Cirillo J, Rogasch NC, Semmler JG (2010) Hemispheric differences in use-dependent corticomotor plasticity in young and old adults. Exp Brain Res 205:57–68. https://doi.org/10.1007/s00221-010-2332-1

    Article  PubMed  Google Scholar 

  25. Cirillo J, Todd G, Semmler JG (2011) Corticomotor excitability and plasticity following complex visuomotor training in young and old adults. Eur J Neurosci 34:1847–1856. https://doi.org/10.1111/j.1460-9568.2011.07870.x

    Article  PubMed  Google Scholar 

  26. Cirillo J, Hughes J, Ridding M, Thomas PQ, Semmler JG (2012) Differential modulation of motor cortex excitability in BDNF Met allele carriers following experimentally induced and use-dependent plasticity. Eur J Neurosci 36:2640–2649. https://doi.org/10.1111/j.1460-9568.2012.08177.x

    Article  PubMed  Google Scholar 

  27. Classen J, Liepert J, Wise SP, Hallett M, Cohen LG (1998) Rapid plasticity of human cortical movement representation induced by practice. J Neurophysiol 79:1117–1123

    CAS  Article  Google Scholar 

  28. Classen J, Wolters A, Stefan K, Wycislo M, Sandbrink F, Schmidt A, Kunesch E (2004) Paired associative stimulation. Supp Clin Neurophysiol 57:563–569

    Article  Google Scholar 

  29. Conde V, Vollmann H, Sehm B, Taubert M, Villringer A, Ragert P (2012) Cortical thickness in primary sensorimotor cortex influences the effectiveness of paired associative stimulation. Neuroimage 60:864–870. https://doi.org/10.1016/j.neuroimage.2012.01.052

    Article  PubMed  Google Scholar 

  30. Corp DT, Bereznicki HGK, Clark GM et al (2020) Large-scale analysis of interindividual variability in theta-burst stimulation data: results from the “Big TMS data collaboration.” Brain Stimul 13:1476–1488. https://doi.org/10.1016/j.brs.2020.07.018

    Article  PubMed  PubMed Central  Google Scholar 

  31. Cuypers K, Verstraelen S, Maes C et al (2020) Task-related measures of short-interval intracortical inhibition and GABA levels in healthy young and older adults: a multimodal TMS-MRS study. Neuroimage 208:116470. https://doi.org/10.1016/j.neuroimage.2019.116470

    CAS  Article  PubMed  Google Scholar 

  32. Di Lazzaro V, Rothwell JC (2014) Corticospinal activity evoked and modulated by non-invasive stimulation of the intact human motor cortex. J Physiol 592:4115–4128. https://doi.org/10.1113/jphysiol.2014.274316

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Di Lazzaro V, Pilato F, Dileone M et al (2008) The physiological basis of the effects of intermittent theta burst stimulation of the human motor cortex. J Physiol 586:3871–3879. https://doi.org/10.1113/jphysiol.2008.152736

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Di Lazzaro V, Dileone M, Pilato F et al (2009) Associative motor cortex plasticity: direct evidence in humans. Cereb Cortex 19:2326–2330. https://doi.org/10.1093/cercor/bhn255

    Article  PubMed  Google Scholar 

  35. Dickins DS, Sale MV, Kamke MR (2015a) Intermanual transfer and bilateral cortical plasticity is maintained in older adults after skilled motor training with simple and complex tasks. Front Aging Neurosci 7:73. https://doi.org/10.3389/fnagi.2015.00073

    Article  PubMed  PubMed Central  Google Scholar 

  36. Dickins DS, Sale MV, Kamke MR (2015b) Plasticity induced by intermittent theta burst stimulation in bilateral motor cortices is not altered in older adults. Neural Plast 2015:323409. https://doi.org/10.1155/2015/323409

    Article  PubMed  PubMed Central  Google Scholar 

  37. Dickins DSE, Kamke MR, Sale MV (2017) Corticospinal plasticity in bilateral primary motor cortices induced by paired associative stimulation to the dominant hemisphere does not differ between young and older adults. Neural Plast 2017:8319049. https://doi.org/10.1155/2017/8319049

    Article  PubMed  PubMed Central  Google Scholar 

  38. Dumel G, Bourassa M-E, Desjardins M, Voarino N, Charlebois-Plante C, Doyon J, De Beaumont L (2016) Multisession anodal tDCS protocol improves motor system function in an aging population. Neural Plast 2016:5961362. https://doi.org/10.1155/2016/5961362

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Esposito R, Bortoletto M, Miniussi C (2020) Integrating TMS, EEG, and MRI as an approach for studying brain connectivity. Neuroscientist 26:471–486. https://doi.org/10.1177/1073858420916452

    Article  PubMed  Google Scholar 

  40. Fathi D, Ueki Y, Mima T, Koganemaru S, Nagamine T, Tawfik A, Fukuyama H (2010) Effects of aging on the human motor cortical plasticity studied by paired associative stimulation. Clin Neurophysiol 121:90–93. https://doi.org/10.1016/j.clinph.2009.07.048

    Article  PubMed  Google Scholar 

  41. Ferreri F, Rossini PM (2013) TMS and TMS-EEG techniques in the study of the excitability, connectivity, and plasticity of the human motor cortex. Rev Neurosci 24:431–442. https://doi.org/10.1515/revneuro-2013-0019

    Article  PubMed  Google Scholar 

  42. Flament D, Goldsmith P, Buckley CJ, Lemon RN (1993) Task dependence of responses in first dorsal interosseous muscle to magnetic brain stimulation in man. J Physiol 464:361–378

    CAS  Article  Google Scholar 

  43. Flor H, Elbert T, Knecht S et al (1995) Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature 375:482–484. https://doi.org/10.1038/375482a0

    CAS  Article  PubMed  Google Scholar 

  44. Freitas C, Perez J, Knobel M et al (2011) Changes in cortical plasticity across the lifespan. Front Aging Neurosci 3:5. https://doi.org/10.3389/fnagi.2011.00005

    Article  PubMed  PubMed Central  Google Scholar 

  45. Freitas C, Farzan F, Pascual-Leone A (2013) Assessing brain plasticity across the lifespan with transcranial magnetic stimulation: why, how, and what is the ultimate goal? Front Neurosci 7:42. https://doi.org/10.3389/fnins.2013.00042

    Article  PubMed  PubMed Central  Google Scholar 

  46. Fujiyama H, Hyde J, Hinder MR, Kim S-J, McCormack GH, Vickers JC, Summers JJ (2014) Delayed plastic responses to anodal tDCS in older adults. Front Aging Neurosci 6:115. https://doi.org/10.3389/fnagi.2014.00115

    Article  PubMed  PubMed Central  Google Scholar 

  47. Fujiyama H, Hinder MR, Barzideh A et al (2017) Preconditioning tDCS facilitates subsequent tDCS effect on skill acquisition in older adults. Neurobiol Aging 51:31–42. https://doi.org/10.1016/j.neurobiolaging.2016.11.012

    Article  PubMed  Google Scholar 

  48. Ghasemian-Shirvan E, Farnad L, Mosayebi-Samani M, Verstraelen S, Meesen RLJ, Kuo MF, Nitsche MA (2020) Age-related differences of motor cortex plasticity in adults: a transcranial direct current stimulation study. Brain Stimul 13:1588–1599. https://doi.org/10.1016/j.brs.2020.09.004

    Article  PubMed  Google Scholar 

  49. Giesebrecht S, van Duinen H, Todd G, Gandevia SC, Taylor JL (2012) Training in a ballistic task but not a visuomotor task increases responses to stimulation of human corticospinal axons. J Neurophysiol 107:2485–2492. https://doi.org/10.1152/jn.01117.2010

    Article  PubMed  Google Scholar 

  50. Goldsworthy MR, Rogasch NC, Ballinger S et al (2020) Age-related decline of neuroplasticity to intermittent theta burst stimulation of the lateral prefrontal cortex and its relationship with late-life memory performance. Clin Neurophysiol 131:2181–2191. https://doi.org/10.1016/j.clinph.2020.06.015

    Article  PubMed  Google Scholar 

  51. Gomes-Osman J, Indahlastari A, Fried PJ et al (2018) Non-invasive brain stimulation: probing intracortical circuits and improving cognition in the aging brain. Front Aging Neurosci 10:177. https://doi.org/10.3389/fnagi.2018.00177

    Article  PubMed  PubMed Central  Google Scholar 

  52. Goodwill AM, Reynolds J, Daly RM, Kidgell DJ (2013) Formation of cortical plasticity in older adults following tDCS and motor training. Front Aging Neurosci 5:87. https://doi.org/10.3389/fnagi.2013.00087

    Article  PubMed  PubMed Central  Google Scholar 

  53. Goodwill AM, Daly RM, Kidgell DJ (2015) The effects of anodal-tDCS on cross-limb transfer in older adults. Clin Neurophysiol 126:2189–2197. https://doi.org/10.1016/j.clinph.2015.01.006

    Article  PubMed  Google Scholar 

  54. Guerra A, Suppa A, Bologna M et al (2018) Boosting the LTP-like plasticity effect of intermittent theta-burst stimulation using gamma transcranial alternating current stimulation. Brain Stimul 11:734–742. https://doi.org/10.1016/j.brs.2018.03.015

    Article  PubMed  PubMed Central  Google Scholar 

  55. Guerra A, Lopez-Alonso V, Cheeran B, Suppa A (2020a) Solutions for managing variability in non-invasive brain stimulation studies. Neurosci Lett 719:133332. https://doi.org/10.1016/j.neulet.2017.12.060

    CAS  Article  PubMed  Google Scholar 

  56. Guerra A, Lopez-Alonso V, Cheeran B, Suppa A (2020b) Variability in non-invasive brain stimulation studies: reasons and results. Neurosci Lett 719:133330. https://doi.org/10.1016/j.neulet.2017.12.058

    CAS  Article  PubMed  Google Scholar 

  57. Guerra A, Asci F, Zampogna A, D’Onofrio V, Berardelli A, Suppa A (2021) The effect of gamma oscillations in boosting primary motor cortex plasticity is greater in young than older adults. Clin Neurophysiol 132:1358–1366. https://doi.org/10.1016/j.clinph.2021.01.032

    Article  PubMed  Google Scholar 

  58. Hamada M, Terao Y, Hanajima R et al (2008) Bidirectional long-term motor cortical plasticity and metaplasticity induced by quadripulse transcranial magnetic stimulation. J Physiol 586:3927–3947. https://doi.org/10.1113/jphysiol.2008.152793

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. Hanajima R, Tanaka N, Tsutsumi R et al (2017) The effect of age on the homotopic motor cortical long-term potentiation-like effect induced by quadripulse stimulation. Exp Brain Res 235:2103–2108. https://doi.org/10.1007/s00221-017-4953-0

    Article  PubMed  Google Scholar 

  60. Hayashi M, Yamashita A, Shimizu K (1997) Somatostatin and brain-derived neurotrophic factor mRNA expression in the primate brain: decreased levels of mRNAs during aging. Brain Res 749:283–289. https://doi.org/10.1016/S0006-8993(96)01317-0

    CAS  Article  PubMed  Google Scholar 

  61. Heise KF, Zimerman M, Hoppe J, Gerloff C, Wegscheider K, Hummel FC (2013) The aging motor system as a model for plastic changes of GABA-mediated intracortical inhibition and their behavioral relevance. J Neurosci 33:9039–9049. https://doi.org/10.1523/JNEUROSCI.4094-12.2013

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. Heise K-F, Niehoff M, Feldheim J-F, Liuzzi G, Gerloff C, Hummel FC (2014) Differential behavioral and physiological effects of anodal transcranial direct current stimulation in healthy adults of younger and older age. Front Aging Neurosci 6:146. https://doi.org/10.3389/fnagi.2014.00146

    Article  PubMed  PubMed Central  Google Scholar 

  63. Henderson G, Tomlinson BE, Gibson PH (1980) Cell counts in human cerebral cortex in normal adults throughout life using an image analysing computer. J Neurol Sci 46:113–136

    CAS  Article  Google Scholar 

  64. Heroux ME, Taylor JL, Gandevia SC (2015) The use and abuse of transcranial magnetic stimulation to modulate corticospinal excitability in humans. PLoS ONE 10:e0144151. https://doi.org/10.1371/journal.pone.0144151

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. Hinder MR, Schmidt MW, Garry MI, Carroll TJ, Summers JJ (2011) Absence of cross-limb transfer of performance gains following ballistic motor practice in older adults. J Appl Physiol 110:166–175. https://doi.org/10.1152/japplphysiol.00958.2010

    Article  PubMed  Google Scholar 

  66. Hinder MR, Carroll TJ, Summers JJ (2013a) Inter-limb transfer of ballistic motor skill following non-dominant limb training in young and older adults. Exp Brain Res 227:19–29. https://doi.org/10.1007/s00221-013-3481-9

    Article  PubMed  Google Scholar 

  67. Hinder MR, Carroll TJ, Summers JJ (2013b) Transfer of ballistic motor skill between bilateral and unilateral contexts in young and older adults: neural adaptations and behavioural implications. J Neurophysiol 109:2963–2971. https://doi.org/10.1152/jn.00535.2012

    Article  PubMed  Google Scholar 

  68. Hoff M, Kaminski E, Rjosk V, Sehm B, Steele CJ, Villringer A, Ragert P (2015) Augmenting mirror visual feedback-induced performance improvements in older adults. Eur J Neurosci 41:1475–1483. https://doi.org/10.1111/ejn.12899

    Article  PubMed  Google Scholar 

  69. Holmstrom L, de Manzano O, Vollmer B, Forsman L, Valero-Cuevas FJ, Ullen F, Forssberg H (2011) Dissociation of brain areas associated with force production and stabilization during manipulation of unstable objects. Exp Brain Res 215:359–367. https://doi.org/10.1007/s00221-011-2903-9

    Article  PubMed  PubMed Central  Google Scholar 

  70. Horvath JC, Forte JD, Carter O (2015) Evidence that transcranial direct current stimulation (tDCS) generates little-to-no reliable neurophysiologic effect beyond MEP amplitude modulation in healthy human subjects: a systematic review. Neuropsychologia 66:213–236. https://doi.org/10.1016/j.neuropsychologia.2014.11.021

    Article  PubMed  Google Scholar 

  71. Huang Y-Z, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC (2005) Theta burst stimulation of the human motor cortex. Neuron 45:201–206. https://doi.org/10.1016/j.neuron.2004.12.033

    CAS  Article  PubMed  Google Scholar 

  72. Huang Y-Z, Chen R-S, Rothwell JC, Wen H-Y (2007) The after-effect of human theta burst stimulation is NMDA receptor dependent. Clin Neurophysiol 118:1028–1032. https://doi.org/10.1016/j.clinph.2007.01.021

    CAS  Article  PubMed  Google Scholar 

  73. Huang Y-Z, Lu M-K, Antal A et al (2017) Plasticity induced by non-invasive transcranial brain stimulation: a position paper. Clin Neurophysiol 128:2318–2329. https://doi.org/10.1016/j.clinph.2017.09.007

    Article  PubMed  Google Scholar 

  74. Huber R, Määttä S, Esser SK et al (2008) Measures of cortical plasticity after transcranial paired associative stimulation predict changes in electroencephalogram slow-wave activity during subsequent sleep. J Neurosci 28:7911–7918. https://doi.org/10.1523/JNEUROSCI.1636-08.2008

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. Indahlastari A, Albizu A, O’Shea A et al (2020) Modeling transcranial electrical stimulation in the aging brain. Brain Stimul 13:664–674. https://doi.org/10.1016/j.brs.2020.02.007

    Article  PubMed  PubMed Central  Google Scholar 

  76. Jones EG (1993) GABAergic neurons and their role in cortical plasticity in primates. Cereb Cortex 3:361–372

    CAS  Article  Google Scholar 

  77. Jonker ZD, Gaiser C, Tulen JHM, Ribbers GM, Frens MA, Selles RW (2020) No effect of anodal tDCS on motor cortical excitability and no evidence for responders in a large double-blind placebo-controlled trial. Brain Stimul. https://doi.org/10.1016/j.brs.2020.11.005

    Article  PubMed  Google Scholar 

  78. Jung P, Ziemann U (2009) Homeostatic and nonhomeostatic modulation of learning in human motor cortex. J Neurosci 29:5597–5604. https://doi.org/10.1523/JNEUROSCI.0222-09.2009

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  79. Kaminski E, Hoff M, Rjosk V et al (2017) Anodal transcranial direct current stimulation does not facilitate dynamic balance task learning in healthy old adults. Front Hum Neurosci 11:16. https://doi.org/10.3389/fnhum.2017.00016

    Article  PubMed  PubMed Central  Google Scholar 

  80. Kamke MR, Hall MG, Lye HF et al (2012) Visual attentional load influences plasticity in the human motor cortex. J Neurosci 32:7001–7008. https://doi.org/10.1523/JNEUROSCI.1028-12.2012

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  81. Kleim JA, Chan S, Pringle E, Schallert K, Procaccio V, Jimenez R, Cramer SC (2006) BDNF val66met polymorphism is associated with modified experience-dependent plasticity in human motor cortex. Nat Neurosci 9:735–737. https://doi.org/10.1038/nn1699

    CAS  Article  Google Scholar 

  82. Laakso I, Tanaka S, Koyama S, De Santis V, Hirata A (2015) Inter-subject variability in electric fields of motor cortical tDCS. Brain Stimul 8:906–913. https://doi.org/10.1016/j.brs.2015.05.002

    Article  PubMed  Google Scholar 

  83. Liepert J, Bauder H, Wolfgang HR, Miltner WH, Taub E, Weiller C (2000) Treatment-induced cortical reorganization after stroke in humans. Stroke 31:1210–1216. https://doi.org/10.1161/01.str.31.6.1210

    CAS  Article  PubMed  Google Scholar 

  84. List J, Kübke JC, Lindenberg R, Külzow N, Kerti L, Witte V, Floel A (2013) Relationship between excitability, plasticity and thickness of the motor cortex in older adults. Neuroimage 83:809–816. https://doi.org/10.1016/j.neuroimage.2013.07.033

    Article  PubMed  Google Scholar 

  85. Lopez-Alonso V, Cheeran B, Río-Rodríguez D, Fernandez-Del-Olmo M (2014) Inter-individual variability in response to non-invasive brain stimulation paradigms. Brain Stimul 7:372–380. https://doi.org/10.1016/j.brs.2014.02.004

    Article  PubMed  Google Scholar 

  86. McAllister SM, Rothwell JC, Ridding MC (2009) Selective modulation of intracortical inhibition by low-intensity Theta Burst Stimulation. Clin Neurophysiol 120:820–826. https://doi.org/10.1016/j.clinph.2009.02.003

    CAS  Article  PubMed  Google Scholar 

  87. McClintock SM, Freitas C, Oberman L, Lisanby SH, Pascual-Leone A (2011) Transcranial magnetic stimulation: a neuroscientific probe of cortical function in schizophrenia. Biol Psychiatry 70:19–27. https://doi.org/10.1016/j.biopsych.2011.02.031

    Article  PubMed  PubMed Central  Google Scholar 

  88. McNevin NH, Wulf G, Carlson C (2000) Effects of attentional focus, self-control, and dyad training on motor learning: implications for physical rehabilitation. Phys Ther 80:373–385

    CAS  Article  Google Scholar 

  89. Monfils MH, Teskey GC (2004) Skilled-learning-induced potentiation in rat sensorimotor cortex: a transient form of behavioural long-term potentiation. Neuroscience 125:329–336. https://doi.org/10.1016/j.neuroscience.2004.01.048

    CAS  Article  PubMed  Google Scholar 

  90. Mooney RA, Cirillo J, Byblow WD (2019) Neurophysiological mechanisms underlying motor skill learning in young and older adults. Exp Brain Res 237:2331–2344. https://doi.org/10.1007/s00221-019-05599-8

    Article  PubMed  Google Scholar 

  91. Mora F (2013) Successful brain aging: plasticity, environmental enrichment, and lifestyle. Dialogues Clin Neurosci 15:45–52

    Article  Google Scholar 

  92. Mora F, Segovia G, Del Arco A (2008) Glutamate-dopamine-GABA interactions in the aging basal ganglia. Brain Res Rev 58:340–353. https://doi.org/10.1016/j.brainresrev.2007.10.006

    CAS  Article  PubMed  Google Scholar 

  93. Muellbacher W, Ziemann U, Boroojerdi B, Cohen L, Hallett M (2001) Role of the human motor cortex in rapid motor learning. Exp Brain Res 136:431–438

    CAS  Article  Google Scholar 

  94. Muellbacher W, Ziemann U, Wissel J et al (2002) Early consolidation in human primary motor cortex. Nature 415:640–644. https://doi.org/10.1038/nature712

    CAS  Article  PubMed  Google Scholar 

  95. Müller JFM, Orekhov Y, Liu Y, Ziemann U (2007) Homeostatic plasticity in human motor cortex demonstrated by two consecutive sessions of paired associative stimulation. Eur J Neurosci 25:3461–3468. https://doi.org/10.1111/j.1460-9568.2007.05603.x

    Article  PubMed  Google Scholar 

  96. Müller-Dahlhaus F, Ziemann U (2015) Metaplasticity in human cortex. Neuroscientist 21:185–202. https://doi.org/10.1177/1073858414526645

    CAS  Article  PubMed  Google Scholar 

  97. Müller-Dahlhaus JFM, Orekhov Y, Liu Y, Ziemann U (2008) Interindividual variability and age-dependency of motor cortical plasticity induced by paired associative stimulation. Exp Brain Res 187:467–475. https://doi.org/10.1007/s00221-008-1319-7

    Article  PubMed  Google Scholar 

  98. Müller-Dahlhaus F, Lücke C, Lu M-K, Arai N, Fuhl A, Herrmann E, Ziemann U (2015) Augmenting LTP-like plasticity in human motor cortex by spaced paired associative stimulation. PLoS ONE 10:e0131020. https://doi.org/10.1371/journal.pone.0131020

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  99. Murakami T, Müller-Dahlhaus F, Lu M-K, Ziemann U (2012) Homeostatic metaplasticity of corticospinal excitatory and intracortical inhibitory neural circuits in human motor cortex. J Physiol 590(22):5765–5781. https://doi.org/10.1113/jphysiol.2012.238519

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  100. Nitsche MA, Paulus W (2000) Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 527(Pt 3):633–639. https://doi.org/10.1111/j.1469-7793.2000.t01-1-00633.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  101. Nitsche MA, Cohen LG, Wassermann EM et al (2008) Transcranial direct current stimulation: state of the art 2008. Brain Stimul 1:206–223

    Article  Google Scholar 

  102. Nowak M, Hinson E, van Ede F et al (2017) Driving human motor cortical oscillations leads to behaviorally relevant changes in local GABAA inhibition: A tACS-TMS study. J Neurosci 37:4481–4492. https://doi.org/10.1523/JNEUROSCI.0098-17.2017

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  103. Opie GM, Post AK, Ridding MC, Ziemann U, Semmler JG (2017a) Modulating motor cortical neuroplasticity with priming paired associative stimulation in young and old adults. Clin Neurophysiol 128:763–769. https://doi.org/10.1016/j.clinph.2017.02.011

    Article  PubMed  Google Scholar 

  104. Opie GM, Vosnakis E, Ridding MC, Ziemann U, Semmler JG (2017b) Priming theta burst stimulation enhances motor cortex plasticity in young but not old adults. Brain Stimul 10:298–304. https://doi.org/10.1016/j.brs.2017.01.003

    Article  PubMed  Google Scholar 

  105. Opie GM, Cirillo J, Semmler JG (2018) Age-related changes in late I-waves influence motor cortex plasticity induction in older adults. J Physiol 596:2597–2609. https://doi.org/10.1113/JP274641

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  106. Opie GM, Hand BJ, Coxon JP, Ridding MC, Ziemann U, Semmler JG (2019) Visuomotor task acquisition is reduced by priming paired associative stimulation in older adults. Neurobiol Aging 81:67–76. https://doi.org/10.1016/j.neurobiolaging.2019.05.017

    Article  PubMed  Google Scholar 

  107. Opie GM, Pourmajidian M, Ziemann U, Semmler JG (2020) Investigating the influence of paired-associative stimulation on multi-session skill acquisition and retention in older adults. Clin Neurophysiol 131:1497–1507. https://doi.org/10.1016/j.clinph.2020.04.010

    Article  PubMed  Google Scholar 

  108. Panouillères MT, Joundi RA, Brittain J-S, Jenkinson N (2015) Reversing motor adaptation deficits in the ageing brain using non-invasive stimulation. J Physiol 593(16):3645–3655. https://doi.org/10.1113/JP270484

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  109. Pascual-Leone A, Cammarota A, Wassermann EM, Brasil-Neto JP, Cohen LG, Hallett M (1993) Modulation of motor cortical outputs to the reading hand of braille readers. Ann Neurol 34:33–37. https://doi.org/10.1002/ana.410340108

    CAS  Article  PubMed  Google Scholar 

  110. Perez MA, Lungholt BKS, Nyborg K, Nielsen JB (2004) Motor skill training induces changes in the excitability of the leg cortical area in healthy humans. Exp Brain Res 159:197–205. https://doi.org/10.1007/s00221-004-1947-5

    Article  PubMed  Google Scholar 

  111. Phillips C (2017) Lifestyle modulators of neuroplasticity: how physical activity, mental engagement, and diet promote cognitive health during aging. Neural Plast 2017:3589271. https://doi.org/10.1155/2017/3589271

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  112. Pitcher JB, Ogston KM, Miles TS (2003) Age and sex differences in human motor cortex input-output characteristics. J Physiol 546:605–613

    CAS  Article  Google Scholar 

  113. Polimanti R, Simonelli I, Zappasodi F et al (2016) Biological factors and age-dependence of primary motor cortex experimental plasticity. Neurol Sci 37:211–218. https://doi.org/10.1007/s10072-015-2388-6

    Article  PubMed  Google Scholar 

  114. Quartarone A, Rizzo V, Bagnato S et al (2005) Homeostatic-like plasticity of the primary motor hand area is impaired in focal hand dystonia. Brain 128:1943–1950. https://doi.org/10.1093/brain/awh527

    Article  PubMed  Google Scholar 

  115. Raw RK, Allen RJ, Mon-Williams M, Wilkie RM (2016) Motor sequence learning in healthy older adults Is not necessarily facilitated by transcranial direct current stimulation (tDCS). Geriatrics. https://doi.org/10.3390/geriatrics1040032

    Article  PubMed  PubMed Central  Google Scholar 

  116. Reis J, Robertson E, Krakauer J et al (2008) Consensus: Can transcranial direct current stimulation and transcranial magnetic stimulation enhance motor learning and memory formation. Brain Stimul 1:363–369. https://doi.org/10.1016/j.brs.2008.08.001

    Article  PubMed  PubMed Central  Google Scholar 

  117. Ridding MC, Rothwell JC (2007) Is there a future for therapeutic use of transcranial magnetic stimulation? Nat Rev Neurosci 8:559–567. https://doi.org/10.1038/nrn2169

    CAS  Article  PubMed  Google Scholar 

  118. Ridding MC, Ziemann U (2010) Determinants of the induction of cortical plasticity by non-invasive brain stimulation in healthy subjects. J Physiol 588:2291–2304. https://doi.org/10.1113/jphysiol.2010.190314

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  119. Rioult-Pedotti MS, Friedman D, Donoghue JP (2000) Learning-induced LTP in neocortex. Science 290:533–536

    CAS  Article  Google Scholar 

  120. Rocchi L, Di Santo A, Brown K et al (2021) Disentangling EEG responses to TMS due to cortical and peripheral activations. Brain Stimul 14:4–18. https://doi.org/10.1016/j.brs.2020.10.011

    Article  PubMed  Google Scholar 

  121. Rogasch NC, Dartnall TJ, Cirillo J, Nordstrom MA, Semmler JG (2009) Corticomotor plasticity and learning of a ballistic thumb training task are diminished in older adults. J Appl Physiol 107:1874–1883. https://doi.org/10.1152/japplphysiol.00443.2009

    Article  PubMed  Google Scholar 

  122. Rosenkranz K, Williamon A, Rothwell JC (2007) Motorcortical excitability and synaptic plasticity is enhanced in professional musicians. J Neurosci 27:5200–5206. https://doi.org/10.1523/JNEUROSCI.0836-07.2007

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  123. Rossini PM, Burke D, Chen R et al (2015) Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N committee. Clin Neurophysiol 126:1071–1107. https://doi.org/10.1016/j.clinph.2015.02.001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  124. Salat DH, Buckner RL, Snyder AZ et al (2004) Thinning of the cerebral cortex in aging. Cereb Cortex 14:721–730. https://doi.org/10.1093/cercor/bhh032

    Article  PubMed  Google Scholar 

  125. Sale MV, Semmler JG (2005) Age-related differences in corticospinal control during functional isometric contractions in left and right hands. J Appl Physiol 99:1483–1493. https://doi.org/10.1152/japplphysiol.00371.2005

    Article  PubMed  Google Scholar 

  126. Sale MV, Ridding MC, Nordstrom MA (2008) Cortisol inhibits neuroplasticity induction in human motor cortex. J Neurosci 28:8285–8293. https://doi.org/10.1523/JNEUROSCI.1963-08.2008

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  127. Sanes JN, Donoghue JP (2000) Plasticity and primary motor cortex. Ann Rev Neurosci 23:393–415. https://doi.org/10.1146/annurev.neuro.23.1.393

    CAS  Article  PubMed  Google Scholar 

  128. Sawaki L, Yaseen Z, Kopylev L, Cohen LG (2003) Age-dependent changes in the ability to encode a novel elementary motor memory. Ann Neurol 53:521–524. https://doi.org/10.1002/ana.10529

    Article  PubMed  Google Scholar 

  129. Scahill RI, Frost C, Jenkins R, Whitwell JL, Rossor MN, Fox NC (2003) A longitudinal study of brain volume changes in normal aging using serial registered magnetic resonance imaging. Arch Neurol 60:989–994. https://doi.org/10.1001/archneur.60.7.989

    Article  PubMed  Google Scholar 

  130. Segovia G, Porras A, Del Arco A, Mora F (2001) Glutamatergic neurotransmission in aging: a critical perspective. Mech Ageing Dev 122:1–29

    CAS  Article  Google Scholar 

  131. Seidler RD, Bernard JA, Burutolu TB et al (2010) Motor control and aging: links to age-related brain structural, functional, and biochemical effects. Neurosci Biobehav Rev 34:721–733. https://doi.org/10.1016/j.neubiorev.2009.10.005

    CAS  Article  PubMed  Google Scholar 

  132. Sidhu SK, Pourmajidian M, Opie GM, Semmler JG (2017) Increasing motor cortex plasticity with spaced paired associative stimulation at different intervals in older adults. Eur J Neurosci 46:2674–2683. https://doi.org/10.1111/ejn.13729

    Article  PubMed  Google Scholar 

  133. Siebner HR, Bergmann TO, Bestmann S et al (2009) Consensus paper: combining transcranial stimulation with neuroimaging. Brain Stimul 2:58–80. https://doi.org/10.1016/j.brs.2008.11.002

    Article  PubMed  Google Scholar 

  134. Stefan K, Kunesch E, Cohen LG, Benecke R, Classen J (2000) Induction of plasticity in the human motor cortex by paired associative stimulation. Brain 123(Pt 3):572–584

    Article  Google Scholar 

  135. Stefan K, Wycislo M, Classen J (2004) Modulation of associative human motor cortical plasticity by attention. J Neurophysiol 92:66–72. https://doi.org/10.1152/jn.00383.2003

    Article  PubMed  Google Scholar 

  136. Stinear CM, Byblow WD (2003) Role of intracortical inhibition in selective hand muscle activation. J Neurophysiol 89:2014–2020. https://doi.org/10.1152/jn.00925.2002

    Article  PubMed  Google Scholar 

  137. Summers JJ, Kang N, Cauraugh JH (2016) Does transcranial direct current stimulation enhance cognitive and motor functions in the ageing brain? A systematic review and meta- analysis. Ageing Res Rev 25:42–54. https://doi.org/10.1016/j.arr.2015.11.004

    Article  PubMed  Google Scholar 

  138. Suppa A, Huang YZ, Funke K et al (2016) Ten years of theta burst stimulation in humans: established knowledge, unknowns and prospects. Brain Stimul 9:323–335. https://doi.org/10.1016/j.brs.2016.01.006

    CAS  Article  PubMed  Google Scholar 

  139. Tatti E, Rossi S, Innocenti I, Rossi A, Santarnecchi E (2016) Non-invasive brain stimulation of the aging brain: State of the art and future perspectives. Ageing Res Rev 29:66–89. https://doi.org/10.1016/j.arr.2016.05.006

    Article  PubMed  Google Scholar 

  140. Taylor PK (1984) Non-linear effects of age on nerve conduction in adults. J Neurol Sci 66:223–234. https://doi.org/10.1016/0022-510x(84)90011-x

    CAS  Article  PubMed  Google Scholar 

  141. Tecchio F, Zappasodi F, Pasqualetti P et al (2008) Age dependence of primary motor cortex plasticity induced by paired associative stimulation. Clin Neurophysiol 119:675–682. https://doi.org/10.1016/j.clinph.2007.10.023

    CAS  Article  PubMed  Google Scholar 

  142. Todd G, Kimber TE, Ridding MC, Semmler JG (2010) Reduced motor cortex plasticity following inhibitory rTMS in older adults. Clin Neurophysiol 121:441–447. https://doi.org/10.1016/j.clinph.2009.11.089

    Article  PubMed  Google Scholar 

  143. Tormos JM, Canete C, Tarazona F, Catala MD, Pascual-Leone Pascual A, Pascual-Leone A (1997) Lateralized effects of self-induced sadness and happiness on corticospinal excitability. Neurology 49:487–491. https://doi.org/10.1212/wnl.49.2.487

    CAS  Article  PubMed  Google Scholar 

  144. Verstynen T, Diedrichsen J, Albert N, Aparicio P, Ivry RB (2005) Ipsilateral motor cortex activity during unimanual hand movements relates to task complexity. J Neurophysiol 93:1209–1222. https://doi.org/10.1152/jn.00720.2004

    Article  PubMed  Google Scholar 

  145. Weightman M, Brittain JS, Punt D, Miall RC, Jenkinson N (2020) Targeted tDCS selectively improves motor adaptation with the proximal and distal upper limb. Brain Stimul 13:707–716. https://doi.org/10.1016/j.brs.2020.02.013

    Article  PubMed  Google Scholar 

  146. Wiethoff S, Hamada M, Rothwell JC (2014) Variability in response to transcranial direct current stimulation of the motor cortex. Brain Stimul 7:468–475. https://doi.org/10.1016/j.brs.2014.02.003

    Article  PubMed  Google Scholar 

  147. Wolters A, Sandbrink F, Schlottmann A et al (2003) A temporally asymmetric Hebbian rule governing plasticity in the human motor cortex. J Neurophysiol 89:2339–2345. https://doi.org/10.1152/jn.00900.2002

    Article  PubMed  Google Scholar 

  148. Young-Bernier M, Tanguay AN, Davidson PS, Tremblay F (2014) Short-latency afferent inhibition is a poor predictor of individual susceptibility to rTMS-induced plasticity in the motor cortex of young and older adults. Front Aging Neurosci 6:182. https://doi.org/10.3389/fnagi.2014.00182

    Article  PubMed  PubMed Central  Google Scholar 

  149. Ziemann U, Siebner HR (2008) Modifying motor learning through gating and homeostatic metaplasticity. Brain Stimul 1:60–66. https://doi.org/10.1016/j.brs.2007.08.003

    Article  PubMed  Google Scholar 

  150. Ziemann U, Muellbacher W, Hallett M, Cohen LG (2001) Modulation of practice-dependent plasticity in human motor cortex. Brain 124:1171–1181

    CAS  Article  Google Scholar 

  151. Ziemann U, Paulus W, Nitsche MA et al (2008) Consensus: motor cortex plasticity protocols. Brain Stimul 1:164–182. https://doi.org/10.1016/j.brs.2008.06.006

    Article  PubMed  Google Scholar 

  152. Zimerman M, Hummel FC (2010) Non-invasive brain stimulation: enhancing motor and cognitive functions in healthy old subjects. Front Aging Neurosci 2:149. https://doi.org/10.3389/fnagi.2010.00149

    Article  PubMed  PubMed Central  Google Scholar 

  153. Zimerman M, Nitsch M, Giraux P, Gerloff C, Cohen LG, Hummel FC (2013) Neuroenhancement of the aging brain: restoring skill acquisition in old subjects. Ann Neurol 73:10–15. https://doi.org/10.1002/ana.23761

    Article  PubMed  Google Scholar 

  154. Zoghi M, Pearce SL, Nordstrom MA (2003) Differential modulation of intracortical inhibition in human motor cortex during selective activation of an intrinsic hand muscle. J Physiol 550:933–946. https://doi.org/10.1113/jphysiol.2003.042606

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Funding for the ageing studies from this laboratory have been provided from the Australian Research Council Discovery Projects Grant scheme (Grant numbers DP150100930, DP200101009). RS was supported by a Uehara Memorial Foundation (Grant number 201830079. BJH is supported by an Australian Government Research Training Program Scholarship. GMO is supported by a National Health and Medical Research Council early career fellowship (APP1139723). The study sponsor had no involvement in the collection, analysis and interpretation of the data, or the writing of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to John G. Semmler.

Ethics declarations

Conflict of interest

None of the authors have potential conflicts of interest to be disclosed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Winston D Byblow.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Semmler, J.G., Hand, B.J., Sasaki, R. et al. Age-related changes in motor cortex plasticity assessed with non-invasive brain stimulation: an update and new perspectives. Exp Brain Res 239, 2661–2678 (2021). https://doi.org/10.1007/s00221-021-06163-z

Download citation

Keywords

  • Transcranial magnetic stimulation
  • Motor cortex
  • Neuroplasticity
  • Ageing
  • Motor skill learning