Eye movement influences on coupled and decoupled eye-hand coordination tasks

Abstract

Visually guided reaching precision and accuracy depend on the level of coupling between movements of the eyes and hand. In the present study, participants performed central fixations and either saccadic or smooth pursuit eye movements during fast and accurate reaching tasks involving eye–hand coupling and decoupling to better understand type of eye movement influence over upper limb control. Some eye–hand coupling and decoupling tasks also included hand reversals, where the hand moves away from the target to direct a cursor toward the target to account for various levels of hand–cursor and eye–cursor coupling. Regardless of eye-movement type, eye–hand–cursor coupling produced an endpoint accuracy advantage over decoupling. Use of hand reversal decreased peak speed and increased response time of the hand, whether considering fixation or a given eye movement. Use of smooth pursuit slowed hand movements relative to saccades, yet improved endpoint accuracy. Compared to central fixations, using smooth pursuit also slowed hand movements, while using saccades decreased, thus improved, hand reaction times. Data suggest an advantage, when using smooth pursuit to track the hand movement for the greatest endpoint accuracy, an advantage when using saccades for the fastest movements, and an eye–hand coupling advantage when using saccades for the shortest reactions. Researchers should provide clear eye-movement instructions for participants and/or monitor the eyes when assessing similar upper limb control to account for possible differences in eye movements used. Moreover, the type of eye movement chosen for participants should correspond to the primary goal of the task.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Availability of data and materials

Data will be made available upon request.

References

  1. Angel RW, Alston W, Garland H (1970) Functional relations between the manual and oculomotor control systems. Exp Neurol 27:248–257. https://doi.org/10.1016/0014-4886(70)90218-9

    CAS  Article  PubMed  Google Scholar 

  2. Bahill AT, Clark MR, Stark L (1975) The main sequence, a tool for studying human eye movements. Math Biosci 24:191–204

    Article  Google Scholar 

  3. Bridgeman B, Hendry D, Stark L (1975) Failure to detect displacement of the visual world during saccadic eye movements. Vis Res 15:719–722. https://doi.org/10.1016/0042-6989(75)90290-4

    CAS  Article  PubMed  Google Scholar 

  4. Brown JA, Dalecki M, Hughes C, Macpherson AK, Sergio LE (2015) Cognitive-motor integration deficits in young adult athletes following concussion. BMC Sports Sci Med Rehabil 7:25. https://doi.org/10.1186/s13102-015-0019-4

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cohen J (1969) Statistical power analysis for the behavioural sciences. Academic Press, New York

    Google Scholar 

  6. Connolly JD, Goodale MA, DeSouza JF, Menon RS, Vilis T (2000) A comparison of frontoparietal fMRI activation during anti-saccades and anti-pointing. J Neurophysiol 84:1645–1655. https://doi.org/10.1152/jn.2000.84.3.1645

    CAS  Article  PubMed  Google Scholar 

  7. Crawford JD, Medendorp WP, Marotta JJ (2004) Spatial transformations for eye–hand coordination. J Neurophysiol 92:10–19. https://doi.org/10.1152/jn.00117.2004

    CAS  Article  PubMed  Google Scholar 

  8. Dalecki M, Albines D, Macpherson A, Sergio LE (2016) Prolonged cognitive-motor impairments in children and adolescents with a history of concussion. Concussion 1:CNC14. https://doi.org/10.2217/cnc-2016-0001

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dalecki M, Gorbet DJ, Sergio LE (2019) Development of rule-based eye–hand-decoupling in children and adolescents. Child Neuropsychol 25:1098–1115. https://doi.org/10.1080/09297049.2019.1578342

    Article  PubMed  Google Scholar 

  10. Daniels RJ, Cook SB (2017) Effect of instructions on EMG during the bench press in trained and untrained males. Hum Mov Sci 55:182–188. https://doi.org/10.1016/j.humov.2017.08.010

    Article  PubMed  Google Scholar 

  11. de Boer C, Echlin HV, Rogojin A, Baltaretu BR, Sergio LE (2018) Thinking-while-moving exercises may improve cognition in elderly with mild cognitive deficits: a proof-of-principle study. Dement Geriatr Cogn Dis Extra 8:248–258. https://doi.org/10.1159/000490173

    Article  PubMed  PubMed Central  Google Scholar 

  12. Engel KC, Soechting JF (2003) Interactions between ocular motor and manual responses during two-dimensional tracking. Prog Brain Res 142:141–153. https://doi.org/10.1016/S0079-6123(03)42011-6

    Article  PubMed  Google Scholar 

  13. Erkelens CJ (2006) Coordination of smooth pursuit and saccades. Vis Res 46:163–170. https://doi.org/10.1016/j.visres.2005.06.027

    Article  PubMed  Google Scholar 

  14. Feria CS (2013) Speed has an effect on multiple-object tracking independently of the number of close encounters between targets and distractors. Atten Percept Psychophys 75:53–67. https://doi.org/10.3758/s13414-012-0369-x

    Article  PubMed  Google Scholar 

  15. Fitts PM (1954) The information capacity of the human motor system in controlling the amplitude of movement. J Exp Psychol 47:381–391

    CAS  Article  Google Scholar 

  16. Fuchs AF (1967) Saccadic and smooth pursuit eye movements in the monkey. J Physiol 191:609–631. https://doi.org/10.1113/jphysiol.1967.sp008271

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Gauthier GM, Hofferer JM (1976) Eye tracking of self-moved targets in the absence of vision. Exp Brain Res 26:121–139. https://doi.org/10.1007/BF00238277

    CAS  Article  PubMed  Google Scholar 

  18. Gorbet DJ, Sergio LE (2009) The behavioural consequences of dissociating the spatial directions of eye and arm movements. Brain Res 1284:77–88. https://doi.org/10.1016/j.brainres.2009.05.057

    CAS  Article  PubMed  Google Scholar 

  19. Gorbet DJ, Sergio LE (2016) Don’t watch where you’re going: the neural correlates of decoupling eye and arm movements. Behav Brain Res 298:229–240. https://doi.org/10.1016/j.bbr.2015.11.012

    CAS  Article  PubMed  Google Scholar 

  20. Gorbet DJ, Sergio LE (2018) Move faster, think later: women who play action video games have quicker visually-guided responses with later onset visuomotor-related brain activity. PLoS ONE 13:e0189110. https://doi.org/10.1371/journal.pone.0189110

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Gorbet DJ, Sergio LE (2019) Looking up while reaching out: the neural correlates of making eye and arm movements in different spatial planes. Exp Brain Res 237:57–70. https://doi.org/10.1007/s00221-018-5395-z

    Article  PubMed  Google Scholar 

  22. Gribble PL, Everling S, Ford K, Mattar A (2002) Hand-eye coordination for rapid pointing movements. Arm movement direction and distance are specified prior to saccade onset. Exp Brain Res 145:372–382. https://doi.org/10.1007/s00221-002-1122-9

    Article  PubMed  Google Scholar 

  23. Hawkins KM, Sergio LE (2014) Visuomotor impairments in older adults at increased Alzheimer’s disease risk. J Alzheimers Dis 42:607–621. https://doi.org/10.3233/JAD-140051

    Article  PubMed  Google Scholar 

  24. Hawkins KM, Goyal AI, Sergio LE (2015) Diffusion tensor imaging correlates of cognitive-motor decline in normal aging and increased Alzheimer’s disease risk. J Alzheimers Dis 44:867–878. https://doi.org/10.3233/JAD-142079

    Article  PubMed  Google Scholar 

  25. Henriques DY, Klier EM, Smith MA, Lowy D, Crawford JD (1998) Gaze-centered remapping of remembered visual space in an open-loop pointing task. J Neurosci 18:1583–1594. https://doi.org/10.1523/JNEUROSCI.18-04-01583.1998

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Huang CT, Hwang IS (2013) Kinematic property of target motion conditions gaze behavior and eye–hand synergy during manual tracking. Hum Mov Sci 32:1253–1269. https://doi.org/10.1016/j.humov.2013.03.007

    Article  PubMed  Google Scholar 

  27. Hutton SB, Tegally D (2005) The effects of dividing attention on smooth pursuit eye tracking. Exp Brain Res 163:306–313. https://doi.org/10.1007/s00221-004-2171-z

    CAS  Article  PubMed  Google Scholar 

  28. Huxhold O, Li SC, Schmiedek F, Lindenberger U (2006) Dual-tasking postural control: aging and the effects of cognitive demand in conjunction with focus of attention. Brain Res Bull 69:294–305. https://doi.org/10.1016/j.brainresbull.2006.01.002

    Article  PubMed  Google Scholar 

  29. Jones BD, Van Gemmert AWA, Dalecki M (2020) Does hand-dominance matter in non-standard visuomotor transformations? J Mot Behav 16:1–10. https://doi.org/10.1080/00222895.2020.1817840

    Article  Google Scholar 

  30. Jonikaitis D, Deubel H (2011) Independent allocation of attention to eye and hand targets in coordinated eye–hand movements. Psychol Sci 22:339–347. https://doi.org/10.1177/0956797610397666

    Article  PubMed  Google Scholar 

  31. Munoz DP, Everling S (2004) Look away: the anti-saccade task and the voluntary control of eye movement. Nat Rev Neurosci 5:218–228. https://doi.org/10.1038/nrn1345

    CAS  Article  PubMed  Google Scholar 

  32. Nagel M, Sprenger A, Zapf S et al (2006) Parametric modulation of cortical activation during smooth pursuit with and without target blanking. An fMRI study. Neuroimage 29:1319–1325. https://doi.org/10.1016/j.neuroimage.2005.08.050

    Article  PubMed  Google Scholar 

  33. Neely KA, Heath M (2009) Visuomotor mental rotation: reaction time is not a function of the angle of rotation. Neurosci Lett 463:194–198. https://doi.org/10.1016/j.neulet.2009.07.060

    CAS  Article  PubMed  Google Scholar 

  34. Neely KA, Heath M (2010) Visuomotor mental rotation: the reaction time advantage for anti-pointing is not influenced by perceptual experience with the cardinal axes. Exp Brain Res 201:593–598. https://doi.org/10.1007/s00221-009-2056-2

    Article  PubMed  Google Scholar 

  35. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113. https://doi.org/10.1016/0028-3932(71)90067-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Owsley C, McGwin G Jr (2010) Vision and driving. Vis Res 50:2348–2361. https://doi.org/10.1016/j.visres.2010.05.021

    Article  PubMed  Google Scholar 

  37. Ren L, Khan AZ, Blohm G, Henriques DY, Sergio LE, Crawford JD (2006) Proprioceptive guidance of saccades in eye–hand coordination. J Neurophysiol 96:1464–1477. https://doi.org/10.1152/jn.01012.2005

    CAS  Article  PubMed  Google Scholar 

  38. Salek Y, Anderson ND, Sergio L (2011) Mild cognitive impairment is associated with impaired visual-motor planning when visual stimuli and actions are incongruent. Eur Neurol 66:283–293. https://doi.org/10.1159/000331049

    Article  PubMed  Google Scholar 

  39. Schenk T, Walther EU, Mai N (2000) Closed- and open-loop handwriting performance in patients with multiple sclerosis. Eur J Neurol 7:269–279. https://doi.org/10.1046/j.1468-1331.2000.00068.x

    CAS  Article  PubMed  Google Scholar 

  40. Smith MA, Ghazizadeh A, Shadmehr R (2006) Interacting adaptive processes with different timescales underlie short-term motor learning. PLoS Biol 4:e179. https://doi.org/10.1371/journal.pbio.0040179

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Snyder LH, Calton JL, Dickinson AR, Lawrence BM (2002) Eye–hand coordination: saccades are faster when accompanied by a coordinated arm movement. J Neurophysiol 87:2279–2286. https://doi.org/10.1152/jn.00854.2001

    Article  PubMed  Google Scholar 

  42. Song JH, McPeek RM (2009) Eye–hand coordination during target selection in a pop-out visual search. J Neurophysiol 102:2681–2692. https://doi.org/10.1152/jn.91352.2008

    Article  PubMed  PubMed Central  Google Scholar 

  43. Talpey SW, Young WB, Beseler B (2016) Effect of instructions on selected jump squat variables. J Strength Cond Res 30:2508–2513. https://doi.org/10.1519/JSC.0000000000000435

    Article  PubMed  Google Scholar 

  44. Taylor JA, Ivry RB (2014) Cerebellar and prefrontal cortex contributions to adaptation, strategies, and reinforcement learning. Prog Brain Res 210:217–253. https://doi.org/10.1016/B978-0-444-63356-9.00009-1

    Article  PubMed  PubMed Central  Google Scholar 

  45. Tippett WJ, Krajewski A, Sergio LE (2007) Visuomotor integration is compromised in Alzheimer’s disease patients reaching for remembered targets. Eur Neurol 58:1–11. https://doi.org/10.1159/000102160

    Article  PubMed  Google Scholar 

  46. Tippett WJ, Sergio LE, Black SE (2012) Compromised visually guided motor control in individuals with Alzheimer’s disease: can reliable distinctions be observed? J Clin Neurosci 19:655–660. https://doi.org/10.1016/j.jocn.2011.09.013

    Article  PubMed  Google Scholar 

  47. Vercher JL, Magenes G, Prablanc C, Gauthier GM (1994) Eye-head-hand coordination in pointing at visual targets: spatial and temporal analysis. Exp Brain Res 99:507–523. https://doi.org/10.1007/BF00228987

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jan M. Hondzinski.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Francesco Lacquaniti.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yeomans, M.A., Phillips, B., Dalecki, M. et al. Eye movement influences on coupled and decoupled eye-hand coordination tasks. Exp Brain Res (2021). https://doi.org/10.1007/s00221-021-06138-0

Download citation

Keywords

  • Cognitive-motor integration
  • Eye tracking
  • Kinematics
  • Spatiotemporal control
  • Visuomotor control