Skip to main content

The role of neural efficiency, transient hypofrontality and neural proficiency in optimal performance in self-paced sports: a meta-analytic review

Abstract

We examined changes in brain rhythms in relation to optimal performance in self-paced sports. Eight studies met the inclusion/exclusion criteria, representing 153 participants and eight different sports. We found that (a) optimal performance is characterised by increased alpha (g = .62, p = .02) and theta (g = .74, p = .002) across the cortex; (b) during optimal performance the frontal lobe is more relaxed (higher alpha; g = 1.06, p = .18) and less busy (lower theta; g = .38, p = .08), in comparison to the other brain lobes; (c) for the same given task, experts’ brains are more relaxed (higher alpha, g = .89, p = .34) and less busy (lower theta, g = .91, p = .54) than novices’ brains. Theoretically, our findings suggest that neural efficiency, neural proficiency, and transient hypofrontality are likely complementary neural mechanisms that underpin optimal performance. In practice, neurofeedback training should teach athletes how to amplify and suppress their alpha and theta activity across the brain during all movement stages.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Appelbaum M, Cooper H, Kline RB, Mayo-Wilson E, Nezu AM, Rao SM (2018) Journal article reporting standards for quantitative research in psychology: the APA publications and communications board task force report. Am Psychol 73(1):3–25. https://doi.org/10.1037/amp0000191

    Article  PubMed  Google Scholar 

  2. Baumeister J, Reinecke K, Liesen H, Weiss M (2008) Cortical activity of skilled performance in a complex sports related motor task. Eur J Appl Physiol 104(4):625–631

    Article  Google Scholar 

  3. Bazanova OM, Vernon D (2014) Interpreting EEG alpha activity. Neurosci Biobehav Rev 44:94–110. https://doi.org/10.1016/j.neubiorev.2013.05.007

    CAS  Article  PubMed  Google Scholar 

  4. Bertollo M, di Fronso S, Conforto S, Schmid M, Bortoli L, Comani S, Robazza C (2016) Proficient brain for optimal performance: the MAP model perspective. PeerJ 4:1–26. https://doi.org/10.7717/peerj.2082

    Article  Google Scholar 

  5. Bertollo M, Doppelmayr M, Robazza C (2020) Using brain technologies in practice. In: Tenenbaum G, Eklund RC (eds) Handbook of sport psychology. John Wiley & Sons, Hoboken, NJ, pp 666–693

    Chapter  Google Scholar 

  6. Borenstein M, Hedges LV, Higgins JPT, Rothstein HR (2011) Introduction to meta-analysis. John Wiley & Sons, West Susex, UK

    Google Scholar 

  7. Bortoli L, Bertollo M, Hanin Y, Robazza C (2012) Striving for excellence: a multi-action plan intervention model for shooters. Psychol Sport Exerc 13(5):693–701. https://doi.org/10.1016/j.psychsport.2012.04.006

    Article  Google Scholar 

  8. Cacioppo JT, Tassinary LG, Berntson GG (2007) Psychophysiological science: Interdisciplinary approaches to classic questions about the mind. In: Cacioppo JT, Tassinary LG, Berntson G (eds) Handbook of psychophysiology, 3rd edn. Cambridge University Press, New York, NY, pp 1–24

    Google Scholar 

  9. Chuang LY, Huang CJ, Hung TM (2013) The differences in frontal midline theta power between successful and unsuccessful basketball free throws of elite basketball players. Int J Psychophysiol 90(3):321–328

    Article  Google Scholar 

  10. Cheng M-Y, Hung C-L, Huang C-J, Chang Y-K, Lo L-C, Shen C, Hung T-M (2015) Expert-novice differences in SMR activity during dart throwing. Biol Psychol 110:212–218. https://doi.org/10.1016/j.biopsycho.2015.08.003

    Article  PubMed  Google Scholar 

  11. Cheron G, Petit G, Cheron J, Leroy A, Cebolla A, Cevallos C, Clarinval A-M (2016) Brain oscillations in sport: toward EEG biomarkers of performance. Front Psychol 7:246. https://doi.org/10.3389/fpsyg.2016.00246

    Article  PubMed  PubMed Central  Google Scholar 

  12. Christie S, di Fronso S, Bertollo M, Werthner P (2017) Individual alpha peak frequency in ice hockey shooting performance. Front Psychol 8:762

    Article  Google Scholar 

  13. Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Lawrence Erlbaum Associates, Mahwah, NJ

    Google Scholar 

  14. Coolidge FL, Wynn T (2001) Executive functions of the frontal lobes and the evolutionary ascendancy of Homo sapiens. Camb Archaeol J 11(2):255–260. https://doi.org/10.1017/S0959774301000142

    Article  Google Scholar 

  15. Crews DJ, Landers D (1993) Electroencephalographic measures of attentional patterns prior to the golf putt. Med Sci Sports Exerc 25:116–126

    CAS  Article  Google Scholar 

  16. Csikszentmihalyi M, Jackson SA (1999) Flow in sports: the keys to optimal experiences and performance. Human Kinetics, Champaign, IL

    Google Scholar 

  17. Del Percio C, Rossini PM, Marzano N, Iacoboni M, Infarinato F, Aschieri P, Babiloni C (2008) Is there a “neural efficiency” in athletes? A high-resolut EEG study Neuroimage 42(4):1544–1553. https://doi.org/10.1016/j.neuroimage.2008.05.061

    Article  Google Scholar 

  18. Di Fronso S, Robazza C, Filho E, Bortoli L, Comani S, Bertollo M (2016) Neural markers of performance states in an Olympic athlete: an EEG case study in air-pistol shooting. J Sports Sci Mede 15(2):214–222

    Google Scholar 

  19. Dietrich A (2003) Functional neuroanatomy of altered states of consciousness: the transient hypofrontality hypothesis. Conscious Cogn 12(2):231–256. https://doi.org/10.1016/S1053-8100(02)00046-6

    Article  PubMed  Google Scholar 

  20. Dietrich A (2006) Transient hypofrontality as a mechanism for the psychological effects of exercise. Psychiatry Res 145(1):79–83. https://doi.org/10.1016/j.psychres.2005.07.033

    Article  PubMed  Google Scholar 

  21. Dunst B, Benedek M, Jauk E, Bergner S, Koschutnig K, Sommer M, Bühner M (2014) Neural efficiency as a function of task demands. Intelligence 42:22–30. https://doi.org/10.1016/j.intell.2013.09.005

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ericsson KA (2007) Deliberate practice and the modifiability of body and mind: toward a science of the structure and acquisition of expert and elite performance. Int J Sport Psychol 38:4–34

    Google Scholar 

  23. Ericsson KA (2020) Towards a science of the acquisition of expert performance in sports: Clarifying the differences between deliberate practice and other types of practice. J Sports Sci 38(2):159–176. https://doi.org/10.1080/02640414.2019.1688618

    Article  PubMed  Google Scholar 

  24. Farrow D, Baker J (2018) Barriers and facilitators in theory and practice. In: Baker J, Farrow D (eds) Routledge handbook of sport expertise. Routledge, New York, NY, pp 439–444

    Google Scholar 

  25. Filho E, Tenebaum G (2015) Sports psychology. Oxford University Press, Oxford, UK

    Book  Google Scholar 

  26. Filho E, Tenenbaum G (2020) Methodological approaches in cognitive sport psychology. In: MacMahon C, Raab M (eds) The routledge international encyclopedia of sport and exercise psychology. Routledge

    Google Scholar 

  27. Gavaghan DJ, Moore RA, McQuay HJ (2000) An evaluation of homogeneity tests in meta-analyses in pain using simulations of individual patient data. Pain 85(3):415–424. https://doi.org/10.1016/s0304-3959(99)00302-4

    Article  PubMed  Google Scholar 

  28. Grabner RH, Neubauer AC, Stern E (2006) Superior performance and neural efficiency: the impact of intelligence and expertise. Brain Res Bull 69(4):422–439. https://doi.org/10.1016/j.brainresbull.2006.02.009

    Article  PubMed  Google Scholar 

  29. Haier RJ, Siegel BV Jr, Nuechterlein KH, Hazlett E, Wu JC, Paek J, Buchsbaum MS (1988) Cortical glucose metabolic rate correlates of abstract reasoning and attention studied with positron emission tomography. Intelligence 12(2):199–217. https://doi.org/10.1016/0160-2896(88)90016-5

    Article  Google Scholar 

  30. Hanin YL (2000) Successful and poor performance and emotions. Human Kinetics, Champaign, IL

    Google Scholar 

  31. Hatfield BD (2018) Brain dynamics and motor behavior: a case for efficiency and refinement for superior performance. Kinesiol Rev 7(1):42–50.

    Article  Google Scholar 

  32. Hatfield BD, Jaquess KJ, Lo LC, Oh H (2020) The cognitive and affective neuroscience of superior athletic performance. In: Tenenbaum G, Eklund RC (eds) Handbook of sport psychology. John Wiley & Sons, Hoboken, NJ, pp 487–512

    Chapter  Google Scholar 

  33. Hedges LV (1981) Distribution theory for Glass’s estimator of effect size and related estimators. J Educational Statistics 6(2):107–128. https://doi.org/10.2307/1164588

    Article  Google Scholar 

  34. Hedges LV (1989) A practical guide to modern methods of meta-analysis. National Science Teachers Association, Washington, DC

    Google Scholar 

  35. Hedges LV, Olkin I (1985) Statistical methods for meta-analysis. Academic Press, Orlando, FL

    Google Scholar 

  36. Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21(11):1539–1558. https://doi.org/10.1002/sim.1186

    Article  PubMed  Google Scholar 

  37. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327(7414):557–560. https://doi.org/10.1136/bmj.327.7414.557

    Article  PubMed  PubMed Central  Google Scholar 

  38. Holmes PS, Wright DJ (2017) Motor cognition and neuroscience in sport psychology. Curr Opin Psychol 16:43–47. https://doi.org/10.1016/j.copsyc.2017.03.009

    Article  PubMed  Google Scholar 

  39. Huang X, Lin J, Demner-Fushman D (2006) Evaluation of PICO as a knowledge representation for clinical questions. AMIA Annual Symposium Proceedings, vol 2006. American Medical Informatics Association, p 359

    Google Scholar 

  40. Huedo-Medina TB, Sánchez-Meca J, Marín-Martínez F, Botella J (2006) Assessing heterogeneity in meta-analysis: Q statistic or I2 index? Psychol Methods 11(2):193–206. https://doi.org/10.1037/1082-989X.11.2.193

    Article  PubMed  Google Scholar 

  41. Hunt CA, Rietschel JC, Hatfield BD, Iso-Ahola SE (2013) A psychophysiological profile of winners and losers in sport competition. Sport Exerc Perform Psychol 2(3):220

    Article  Google Scholar 

  42. Katahira K, Yamazaki Y, Yamaoka C, Ozaki H, Nakagawa S, Nagata N (2018) EEG correlates of the flow state: a combination of increased frontal theta and moderate frontocentral alpha rhythm in the mental arithmetic task. Front Psychol 9:300. https://doi.org/10.3389/fpsyg.2018.00300

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ladouce S, Donaldson DI, Dudchenko PA, Ietswaart M (2017) Understanding minds in real-world environments: toward a mobile cognition approach. Front Hum Neurosci 10:694

    Article  Google Scholar 

  44. Lipsey MW, Wilson DB (2001) The way in which intervention studies have “personality” and why it is important to meta-analysis. Eval Health Prof 24(3):236–254. https://doi.org/10.1177/016327870102400302

    CAS  Article  PubMed  Google Scholar 

  45. Loze GM, Collins D, Holmes PS (2001) Pre-shot EEG alpha-power reactivity during expert air-pistol shooting: a comparison of best and worst shots. J Sport Sci 19(9):727–733

    CAS  Article  Google Scholar 

  46. Masters R, Maxwell J (2008) The theory of reinvestment. International Review of Sport and Exercise Psychology 1(2):160–183. https://doi.org/10.1080/17509840802287218

    Article  Google Scholar 

  47. Moher D, Liberati A, Tetzlaff J, Altman DG, Altman D, Antes G, Berlin JA (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement (Chinese edition). J Chin Integr Med 7(9):889–896

    Article  Google Scholar 

  48. Neubauer AC, Fink A (2009) Intelligence and neural efficiency. Neurosci Biobehav Rev 33(7):1004–1023. https://doi.org/10.1016/j.neubiorev.2009.04.001

    Article  PubMed  Google Scholar 

  49. Pacheco NC (2016) Neurofeedback for peak performance training. J Mental Health Counsel 38(2):116–123. https://doi.org/10.17744/mehc.38.2.03

    Article  Google Scholar 

  50. Pageaux B, Lepers R (2018) The effects of mental fatigue on sport-related performance. Prog in Brain Res 240:291–315

    Article  Google Scholar 

  51. Robazza C, Bertollo M, Filho E, Hanin Y, Bortoli L (2016) Perceived control and hedonic tone dynamics during performance in elite shooters. Res Q Exerc Sport 87(3):284–294

    Article  Google Scholar 

  52. Ruiz MC, Raglin JS, Hanin YL (2017) The individual zones of optimal functioning (IZOF) model (1978–2014): historical overview of its development and use. Int J Sport Exerc Psychol 15(1):41–63. https://doi.org/10.1080/1612197X.2015.1041545

    Article  Google Scholar 

  53. Salazar W, Landers DM, Petruzzello SJ, Han M, Crews DJ, Kubitz KA (1990) Hemispheric asymmetry, cardiac response, and performance in elite archers. Res Q Exerc Sport 61(4):351–359. https://doi.org/10.1080/02701367.1990.10607499

    CAS  Article  PubMed  Google Scholar 

  54. Strack B, Linden M, Wilson VS (eds) (2011) Biofeedback and neurofeedback applications in sport psychology. Association for Applied Psychophysiology and Biofeedback

    Google Scholar 

  55. Tenenbaum G, Basevitch I, Gershgoren L, Filho E (2013) Emotions–decision-making in sport: theoretical conceptualization and experimental evidence. Int J Sport Exerc Psychol 11(2):151–168. https://doi.org/10.1080/1612197X.2013.773687

    Article  Google Scholar 

  56. Vickers JN, Williams AM (2017) The role of mental processes in elite sports performance. Oxford Research Encyclopedia of Psychology

    Book  Google Scholar 

  57. Wang J, Chen S (2014) Applied motor learning in physical education and sports. FiT Publishing, Morgantown, WV

    Google Scholar 

  58. Williams J, Krane V (2020) Applied sport psychology: personal growth to peak performance, 4th edn. Mcgraw-Hill Education, New York

    Google Scholar 

  59. Xiang M-Q, Hou X-H, Liao B-G, Liao J-W, Hu M (2018) The effect of neurofeedback training for sport performance in athletes: a meta-analysis. Psychol Sport Exerc 36:114–122. https://doi.org/10.1016/j.psychsport.2018.02.004

    Article  Google Scholar 

  60. Yarrow K, Brown P, Krakauer JW (2009) Inside the brain of an elite athlete: the neural processes that support high achievement in sports. Nat Rev Neurosci 10(8):585–596. https://doi.org/10.1038/nrn2672

    CAS  Article  PubMed  Google Scholar 

  61. Zach S, Dobersek U, Filho E, Inglis V, Tenenbaum G (2018) A meta-analysis of mental imagery effects on post-injury functional mobility, perceived pain, and self-efficacy. Psychol Sport Exerc 34:79–87

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Edson Filho.

Ethics declarations

Competing interests

The authors have no competing interests to report.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Bill J Yates.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Filho, E., Dobersek, U. & Husselman, TA. The role of neural efficiency, transient hypofrontality and neural proficiency in optimal performance in self-paced sports: a meta-analytic review. Exp Brain Res 239, 1381–1393 (2021). https://doi.org/10.1007/s00221-021-06078-9

Download citation

Keywords

  • Optimal performance
  • Precision sports
  • EEG
  • Meta-analysis