Skip to main content

Shoulder position and handedness differentially affect excitability and intracortical inhibition of hand muscles

Abstract

Individuals with stroke show distinct differences in hand function impairment when the shoulder is in adduction, within the workspace compared to when the shoulder is abducted, away from the body. To better understand how shoulder position affects hand control, we tested the corticomotor excitability and intracortical control of intrinsic and extrinsic hand muscles important for grasp in twelve healthy individuals. Motor evoked potentials (MEP) using single and paired-pulse transcranial magnetic stimulation were elicited in extensor digitorum communis (EDC), flexor digitorum superficialis (FDS), first dorsal interosseous (FDI), and abductor pollicis brevis (APB). The shoulder was fully supported in horizontal adduction (ADD) or abduction (ABD). Separate mixed-effect models were fit to the MEP parameters using shoulder position (or upper-extremity [UE] side) as fixed and participants as random effects. In the non-dominant UE, EDC showed significantly greater MEPs in shoulder ABD than ADD. In contrast, the dominant side EDC showed significantly greater MEPs in ADD compared to ABD; %facilitation of EDC on dominant side showed significant stimulus intensity x position interaction, EDC excitability was significantly greater in ADD at 150% of the resting threshold. Intrinsic hand muscles of the dominant UE received significantly more intracortical inhibition (SICI) when the shoulder was in ADD compared to ABD; there was no position-dependent modulation of SICI on the non-dominant side. Our findings suggest that these resting-state changes in hand muscle excitabilities reflect the natural statistics of UE movements, which in turn may arise from as well as shape the nature of shoulder-hand coupling underlying UE behaviors.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Availability of data

The data collected and analyzed in the study herein presented are available upon request to be sent to the corresponding author.

References

  1. Alstermark B, Pettersson LG, Nishimura Y, Yoshino-Saito K, Tsuboi F, Takahashi M, Isa T (2011) Motor command for precision grip in the macaque monkey can be mediated by spinal interneurons. J Neurophysiol 106:122–126. https://doi.org/10.1152/jn.00089.2011

    CAS  Article  PubMed  Google Scholar 

  2. Belhaj-Saif A, Cheney PD (2000) Plasticity in the distribution of the red nucleus output to forearm muscles after unilateral lesions of the pyramidal tract. J Neurophysiol 83:3147–3153

    CAS  Article  Google Scholar 

  3. Belhaj-Saif A, Karrer JH, Cheney PD (1998) Distribution and characteristics of poststimulus effects in proximal and distal forelimb muscles from red nucleus in the monkey. J Neurophysiol 79:1777–1789

    CAS  Article  Google Scholar 

  4. Bizzi E, Cheung VC (2013) The neural origin of muscle synergies. Front Comput Neurosci 7:51. https://doi.org/10.3389/fncom.2013.00051

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bonstrup M, Hagemann J, Gerloff C, Sauseng P, Hummel FC (2015) Alpha oscillatory correlates of motor inhibition in the aged brain. Front Aging Neurosci 7:193. https://doi.org/10.3389/fnagi.2015.00193

    Article  PubMed  PubMed Central  Google Scholar 

  6. Boudrias MH, Belhaj-Saif A, Park MC, Cheney PD (2006) Contrasting properties of motor output from the supplementary motor area and primary motor cortex in rhesus macaques. Cereb Cortex 16:632–638. https://doi.org/10.1093/cercor/bhj009

    Article  PubMed  Google Scholar 

  7. Boudrias MH, McPherson RL, Frost SB, Cheney PD (2010) Output properties and organization of the forelimb representation of motor areas on the lateral aspect of the hemisphere in rhesus macaques. Cereb Cortex 20:169–186. https://doi.org/10.1093/cercor/bhp084

    Article  PubMed  Google Scholar 

  8. Brasil-Neto JP, Cohen LG, Panizza M, Nilsson J, Roth BJ, Hallett M (1992) Optimal focal transcranial magnetic activation of the human motor cortex: effects of coil orientation, shape of the induced current pulse, and stimulus intensity. J Clin Neurophysiol Official Publication American Electroencephalographic Society 9:132–136

    CAS  Article  Google Scholar 

  9. Brunnström S (1970) Movement therapy in hemiplegia: a neurophysiological approach. Facts and Comparisons,

  10. Bryden PJ (2016) The influence of M. P. Bryden’s work on lateralization of motor skill: Is the preferred hand selected for and better at tasks requiring a high degree of skill? Laterality 21:312–328. https://doi.org/10.1080/1357650X.2015.1099661

    Article  PubMed  Google Scholar 

  11. Bryden PJ, Mayer M, Roy EA (2011) Influences of task complexity, object location, and object type on hand selection in reaching in left and right-handed children and adults. Developmental PsychobioL 53:47–58. https://doi.org/10.1002/dev.20486

    Article  Google Scholar 

  12. Capaday C (2004) The integrated nature of motor cortical function. Neuroscientist 10:207–220. https://doi.org/10.1177/107385403262109

    Article  PubMed  Google Scholar 

  13. Capaday C, Ethier C, Brizzi L, Sik A, van Vreeswijk C, Gingras D (2009) On the nature of the intrinsic connectivity of the cat motor cortex: evidence for a recurrent neural network topology. J Neurophysiol 102:2131–2141. https://doi.org/10.1152/jn.91319.2008

    Article  PubMed  Google Scholar 

  14. Daligadu J, Murphy B, Brown J, Rae B, Yielder P (2013) TMS stimulus-response asymmetry in left- and right-handed individuals. Exp Brain Res 224:411–416. https://doi.org/10.1007/s00221-012-3320-4

    Article  PubMed  Google Scholar 

  15. Datta A, Harrison L, Stephens J (1989) Task-dependent changes in the size of response to magnetic brain stimulation in human first dorsal interosseous muscle. J Physiol 418:13–23

    CAS  Article  Google Scholar 

  16. Devanne H, Cohen LG, Kouchtir-Devanne N, Capaday C (2002) Integrated motor cortical control of task-related muscles during pointing in humans. J Neurophysiol 87:3006–3017

    Article  Google Scholar 

  17. Dewald JP, Pope PS, Given JD, Buchanan TS, Rymer WZ (1995) Abnormal muscle coactivation patterns during isometric torque generation at the elbow and shoulder in hemiparetic subjects. Brain 118(Pt 2):495–510

    Article  Google Scholar 

  18. Dominici F, Popa T, Ginanneschi F, Mazzocchio R, Rossi A (2005) Cortico-motoneuronal output to intrinsic hand muscles is differentially influenced by static changes in shoulder positions. Exp Brain Res 164:500–504. https://doi.org/10.1007/s00221-005-2270-5

    CAS  Article  PubMed  Google Scholar 

  19. Ellis MD, Acosta AM, Yao J, Dewald JP (2007) Position-dependent torque coupling and associated muscle activation in the hemiparetic upper extremity. Exp Brain Res 176:594–602. https://doi.org/10.1007/s00221-006-0637-x

    Article  PubMed  Google Scholar 

  20. Fishell G, Kepecs A (2019) Interneuron Types as Attractors and Controllers. Annu Rev Neurosci. https://doi.org/10.1146/annurev-neuro-070918-050421

    Article  PubMed  PubMed Central  Google Scholar 

  21. Flament D, Goldsmith P, Buckley C, Lemon R (1993) Task dependence of responses in first dorsal interosseous muscle to magnetic brain stimulation in man. J Physiol 464:361–378

    CAS  Article  Google Scholar 

  22. Fujiwara K, Tomita H, Kunita K (2009) Increase in corticospinal excitability of limb and trunk muscles according to maintenance of neck flexion. Neurosci Lett 461:235–239. https://doi.org/10.1016/j.neulet.2009.06.047

    CAS  Article  PubMed  Google Scholar 

  23. Garry MI, Kamen G, Nordstrom MA (2004) Hemispheric differences in the relationship between corticomotor excitability changes following a fine-motor task and motor learning. J Neurophysiol 91:1570–1578. https://doi.org/10.1152/jn.00595.2003

    Article  PubMed  Google Scholar 

  24. Geed S, McCurdy ML, van Kan PL (2017) Neuronal Correlates of Functional Coupling between Reach- and Grasp-Related Components of Muscle Activity. Front Neural Circuits 11:7. https://doi.org/10.3389/fncir.2017.00007

    Article  PubMed  PubMed Central  Google Scholar 

  25. Geed S, Van Kan PL (2017) Grasp-based functional coupling between reach-and grasp-related components of forelimb muscle activity. J Motor Behavior 49:312–328

    Article  Google Scholar 

  26. Geevasinga N, Menon P, Kiernan MC, Vucic S (2014) Motor cortical function and the precision grip. Physiol Rep. https://doi.org/10.14814/phy2.12120

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ginanneschi F, Del Santo F, Dominici F, Gelli F, Mazzocchio R, Rossi A (2005) Changes in corticomotor excitability of hand muscles in relation to static shoulder positions. Exp Brain Res 161:374–382. https://doi.org/10.1007/s00221-004-2084-x

    CAS  Article  PubMed  Google Scholar 

  28. Ginanneschi F, Dominici F, Biasella A, Gelli F, Rossi A (2006) Changes in corticomotor excitability of forearm muscles in relation to static shoulder positions. Brain Res 1073–1074:332–338. https://doi.org/10.1016/j.brainres.2005.12.021

    CAS  Article  PubMed  Google Scholar 

  29. Groppa S et al (2012) A practical guide to diagnostic transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol 123:858–882. https://doi.org/10.1016/j.clinph.2012.01.010

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Hammond G, Faulkner D, Byrnes M, Mastaglia F, Thickbroom G (2004) Transcranial magnetic stimulation reveals asymmetrical efficacy of intracortical circuits in primary motor cortex. Exp Brain Res 155:19–23. https://doi.org/10.1007/s00221-003-1696-x

    Article  PubMed  Google Scholar 

  31. Heckman CJ, Johnson M, Mottram C, Schuster J (2008) Persistent inward currents in spinal motoneurons and their influence on human motoneuron firing patterns. Neuroscientist 14:264–275. https://doi.org/10.1177/1073858408314986

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Hoffmann G, Schmit BD, Kahn JH, Kamper DG (2011) Effect of sensory feedback from the proximal upper limb on voluntary isometric finger flexion and extension in hemiparetic stroke subjects. J Neurophysiol 106:2546–2556. https://doi.org/10.1152/jn.00522.2010

    Article  PubMed  PubMed Central  Google Scholar 

  33. Holdefer RN, Miller LE (2002) Primary motor cortical neurons encode functional muscle synergies. Exp Brain Res 146:233–243. https://doi.org/10.1007/s00221-002-1166-x

    CAS  Article  PubMed  Google Scholar 

  34. Houk JC, Gibson AR, Harvey CF, Kennedy PR, van Kan PL (1988) Activity of primate magnocellular red nucleus related to hand and finger movements. Behav Brain Res 28:201–206

    CAS  Article  Google Scholar 

  35. Hu H, Gan J, Jonas P (2014) Interneurons Fast-spiking, parvalbumin(+) GABAergic interneurons: from cellular design to microcircuit function. Science. https://doi.org/10.1126/science.1255263

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hyngstrom AS, Johnson MD, Miller JF, Heckman CJ (2007) Intrinsic electrical properties of spinal motoneurons vary with joint angle. Nat Neurosci 10:363–369. https://doi.org/10.1038/nn1852

    CAS  Article  PubMed  Google Scholar 

  37. Ilić TV, Meintzschel F, Cleff U, Ruge D, Kessler KR, Ziemann U (2002) Short-interval paired-pulse inhibition and facilitation of human motor cortex: the dimension of stimulus intensity. J Physiol 545:153–167

    Article  Google Scholar 

  38. Jeannerod M (1984) The timing of natural prehension movements. J Mot Behav 16:235–254

    CAS  Article  Google Scholar 

  39. Kennedy PR, Gibson AR, Houk JC (1986) Functional and anatomic differentiation between parvicellular and magnocellular regions of red nucleus in the monkey. Brain Res 364:124–136

    CAS  Article  Google Scholar 

  40. Kepecs A, Fishell G (2014) Interneuron cell types are fit to function. Nature 505:318–326. https://doi.org/10.1038/nature12983

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Kilbreath SL, Heard RC (2005) Frequency of hand use in healthy older persons. Australian J Physiotherapy 51:119–122. https://doi.org/10.1016/s0004-9514(05)70040-4

    Article  Google Scholar 

  42. Kisiel-Sajewicz K et al (2011) Weakening of synergist muscle coupling during reaching movement in stroke patients. Neurorehabil Neural Repair 25:359–368. https://doi.org/10.1177/1545968310388665

    Article  PubMed  Google Scholar 

  43. Kouchtir-Devanne N, Capaday C, Cassim F, Derambure P, Devanne H (2012) Task-dependent changes of motor cortical network excitability during precision grip compared to isolated finger contraction. J Neurophysiol 107:1522–1529. https://doi.org/10.1152/jn.00786.2011

    Article  PubMed  Google Scholar 

  44. Kujirai T et al (1993) Corticocortical inhibition in human motor cortex. J Physiol 471:501–519. https://doi.org/10.1113/jphysiol.1993.sp019912

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Kuypers HG, Fleming WR, Farinholt JW (1962) Subcorticospinal projections in the rhesus monkey. J Comp Neurol 118:107–137

    CAS  Article  Google Scholar 

  46. Kuypers HGJM (2011) Anatomy of the Descending Pathways. In: Comprehensive Physiology. John Wiley & Sons, Inc. doi:https://doi.org/10.1002/cphy.cp010213

  47. Lan Y, Yao J, Dewald JPA (2017) The impact of shoulder abduction loading on volitional hand opening and grasping in chronic hemiparetic stroke. Neurorehabil Neural Repair 31:521–529. https://doi.org/10.1177/1545968317697033

    Article  PubMed  PubMed Central  Google Scholar 

  48. Latash ML (2012) The bliss (not the problem) of motor abundance (not redundancy). Exp Brain Res 217:1–5. https://doi.org/10.1007/s00221-012-3000-4

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lawrence DG, Kuypers HG (1968) The functional organization of the motor system in the monkey. II The effects of lesions of the descending brain-stem pathways. Brain 91:15–36

    CAS  Article  Google Scholar 

  50. Lemon RN, Landau W, Tutssel D, Lawrence DG (2012) Lawrence and Kuypers (1968a, b) revisited: copies of the original filmed material from their classic papers in Brain. Brain 135:2290–2295. https://doi.org/10.1093/brain/aws037

    Article  PubMed  Google Scholar 

  51. Mamolo C, Roy E, Rohr L, Bryden P (2006) Reaching patterns across working space: The effects of handedness, task demands, and comfort levels Laterality 11:465–492 doi:https://doi.org/10.1080/13576500600775692

  52. Mamolo CM, Roy EA, Bryden PJ, Rohr LE (2005) The performance of left-handed participants on a preferential reaching test. Brain Cogn 57:143–145. https://doi.org/10.1016/j.bandc.2004.08.033

    Article  PubMed  Google Scholar 

  53. Mazzocchio R, Gelli F, Del Santo F, Popa T, Rossi A (2008) Dynamic changes in cortical and spinal activities with different representations of isometric motor actions and efforts. Brain Stimul 1:33–43. https://doi.org/10.1016/j.brs.2007.08.007

    Article  PubMed  Google Scholar 

  54. McPherson JG, Ellis MD, Harden RN, Carmona C, Drogos JM, Heckman CJ, Dewald JPA (2018) Neuromodulatory inputs to motoneurons contribute to the loss of independent joint control in chronic moderate to severe hemiparetic stroke. Front Neurol 9:470. https://doi.org/10.3389/fneur.2018.00470

    Article  PubMed  PubMed Central  Google Scholar 

  55. McPherson JG, Ellis MD, Heckman CJ, Dewald JP (2008) Evidence for increased activation of persistent inward currents in individuals with chronic hemiparetic stroke. J Neurophysiol 100:3236–3243. https://doi.org/10.1152/jn.90563.2008

    Article  PubMed  PubMed Central  Google Scholar 

  56. McPherson LM, Dewald JPA (2019a) Differences between flexion and extension synergy-driven coupling at the elbow, wrist, and fingers of individuals with chronic hemiparetic stroke. Clin Neurophysiol 130:454–468. https://doi.org/10.1016/j.clinph.2019.01.010

    Article  PubMed  PubMed Central  Google Scholar 

  57. McPherson LM, Dewald JPA (2019b) Differences between flexion and extension synergy-driven coupling at the elbow, wrist, and fingers of individuals with chronic hemiparetic stroke. Clinical Neurophysiol. 130:454–468. https://doi.org/10.1016/j.clinph.2019.01.010

    Article  Google Scholar 

  58. Miller LC, Dewald JP (2012) Involuntary paretic wrist/finger flexion forces and EMG increase with shoulder abduction load in individuals with chronic stroke. Clin Neurophysiol 123:1216–1225. https://doi.org/10.1016/j.clinph.2012.01.009

    Article  PubMed  PubMed Central  Google Scholar 

  59. Mogk JP, Rogers LM, Murray WM, Perreault EJ, Stinear JW (2014) Corticomotor excitability of arm muscles modulates according to static position and orientation of the upper limb. Clin Neurophysiol 125:2046–2054. https://doi.org/10.1016/j.clinph.2014.02.007

    Article  PubMed  Google Scholar 

  60. Morecraft RJ, Ge J, Stilwell-Morecraft KS, McNeal DW, Pizzimenti MA, Darling WG (2013) Terminal distribution of the corticospinal projection from the hand/arm region of the primary motor cortex to the cervical enlargement in rhesus monkey. J Comp Neurol 521:4205–4235. https://doi.org/10.1002/cne.23410

    Article  PubMed  PubMed Central  Google Scholar 

  61. Motawar B, Hur P, Stinear J, Seo NJ (2012) Contribution of intracortical inhibition in voluntary muscle relaxation. Exp Brain Res 221:299–308. https://doi.org/10.1007/s00221-012-3173-x

    Article  PubMed  PubMed Central  Google Scholar 

  62. Motawar B, Stinear JW, Lauer AW, Ramakrishnan V, Seo NJ (2016) Delayed grip relaxation and altered modulation of intracortical inhibition with aging. Exp Brain Res 234:985–995. https://doi.org/10.1007/s00221-015-4527-y

    Article  PubMed  Google Scholar 

  63. Muellbacher W, Ziemann U, Boroojerdi B, Cohen L, Hallett M (2001) Role of the human motor cortex in rapid motor learning. Exp Brain Res 136:431–438. https://doi.org/10.1007/s002210000614

    CAS  Article  PubMed  Google Scholar 

  64. Nielsen J, Pierrot-Deseilligny E (1991) Pattern of cutaneous inhibition of the propriospinal-like excitation to human upper limb motoneurones. J Physiol 434:169–182. https://doi.org/10.1113/jphysiol.1991.sp018464

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. Nielsen JB (2016) Human Spinal Motor Control. Annu Rev Neurosci 39:81–101. https://doi.org/10.1146/annurev-neuro-070815-013913

    CAS  Article  PubMed  Google Scholar 

  66. Nuzzo JL, Trajano GS, Barry BK, Gandevia SC, Taylor JL (2016) Arm posture-dependent changes in corticospinal excitability are largely spinal in origin. J Neurophysiol 115:2076–2082. https://doi.org/10.1152/jn.00885.2015

    Article  PubMed  PubMed Central  Google Scholar 

  67. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    CAS  Article  Google Scholar 

  68. Opie GM, Ridding MC, Semmler JG (2015) Age-related differences in pre- and post-synaptic motor cortex inhibition are task. Dependent Brain Stimul 8:926–936. https://doi.org/10.1016/j.brs.2015.04.001

    Article  PubMed  Google Scholar 

  69. Opie GM, Semmler JG (2014) Age-related differences in short- and long-interval intracortical inhibition in a human hand muscle. Brain Stimul 7:665–672. https://doi.org/10.1016/j.brs.2014.06.014

    Article  PubMed  Google Scholar 

  70. Opie GM, Sidhu SK, Rogasch NC, Ridding MC, Semmler JG (2018) Cortical inhibition assessed using paired-pulse TMS-EEG is increased in older adults. Brain Stimul 11:545–557. https://doi.org/10.1016/j.brs.2017.12.013

    Article  PubMed  Google Scholar 

  71. Park MC, Belhaj-Saif A, Cheney PD (2004) Properties of primary motor cortex output to forelimb muscles in rhesus macaques. J Neurophysiol 92:2968–2984. https://doi.org/10.1152/jn.00649.2003

    Article  PubMed  Google Scholar 

  72. Park MC, Belhaj-Saif A, Gordon M, Cheney PD (2001) Consistent features in the forelimb representation of primary motor cortex in rhesus macaques. J Neurosci 21:2784–2792

    CAS  Article  Google Scholar 

  73. Paulignan Y, MacKenzie C, Marteniuk R, Jeannerod M (1990) The coupling of arm and finger movements during prehension. Exp Brain Res 79:431–435

    CAS  Article  Google Scholar 

  74. Perez MA, Rothwell JC (2015) Distinct influence of hand posture on cortical activity during human grasping. J Neurosci 35:4882–4889. https://doi.org/10.1523/jneurosci.4170-14.2015

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. Perotto AO (2011) Anatomical guide for the electromyographer: the limbs and trunk. Charles C Thomas Publisher,

  76. Pettersson LG (1990) Forelimb movements in the cat; kinetic features and neuronal control Acta physiologica Scandinavica Supplementum 594:1–60

  77. Rosner B (1983) Percentage Points for a Generalized ESD Many-Outlier Procedure. Technometrics 25:165–172. https://doi.org/10.2307/1268549

    Article  Google Scholar 

  78. Rossi S, Hallett M, Rossini PM, Pascual-Leone A (2011) Screening questionnaire before TMS: an update. Clin Neurophysiol 122:1686. https://doi.org/10.1016/j.clinph.2010.12.037

    Article  PubMed  Google Scholar 

  79. Rossi S, Hallett M, Rossini PM, Pascual-Leone A, Safety of TMSCG (2009) Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol 120:2008–2039. https://doi.org/10.1016/j.clinph.2009.08.016

    Article  PubMed  PubMed Central  Google Scholar 

  80. Runnalls KD, Anson G, Byblow WD (2017) Posture interacts with arm weight support to modulate corticomotor excitability to the upper limb. Exp Brain Res 235:97–107. https://doi.org/10.1007/s00221-016-4775-5

    Article  PubMed  Google Scholar 

  81. Runnalls KD, Anson G, Wolf SL, Byblow WD (2014) Partial weight support differentially affects corticomotor excitability across muscles of the upper limb. Physiol Rep. https://doi.org/10.14814/phy2.12183

    Article  PubMed  PubMed Central  Google Scholar 

  82. Schieppati M, Trompetto C, Abbruzzese G (1996) Selective facilitation of responses to cortical stimulation of proximal and distal arm muscles by precision tasks in man. J Physiol 491:551–562

    CAS  Article  Google Scholar 

  83. Schweighofer N, Xiao Y, Kim S, Yoshioka T, Gordon J, Osu R (2015) Effort, success, and nonuse determine arm choice. J Neurophysiol 114:551–559. https://doi.org/10.1152/jn.00593.2014

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  84. Souza VH, Baffa O, Garcia MAC (2018) Lateralized asymmetries in distribution of muscular evoked responses: An evidence of specialized motor control over an intrinsic hand muscle. Brain Res 1684:60–66. https://doi.org/10.1016/j.brainres.2018.01.031

    CAS  Article  PubMed  Google Scholar 

  85. Takei T, Seki K (2013) Synaptic and functional linkages between spinal premotor interneurons and hand-muscle activity during precision grip. Front Comput Neurosci 7:40. https://doi.org/10.3389/fncom.2013.00040

    Article  PubMed  PubMed Central  Google Scholar 

  86. Twitchell TE (1951) The restoration of motor function following hemiplegia in man. Brain 74:443–480

    CAS  Article  Google Scholar 

  87. van Kan PL, Gibson AR, Houk JC (1993a) Movement-related inputs to intermediate cerebellum of the monkey. J Neurophysiol 69:74–94

    Article  Google Scholar 

  88. van Kan PL, Horn KM, Gibson AR (1994) The importance of hand use to discharge of interpositus neurones of the monkey. J Physiol 480(Pt 1):171–190

    Article  Google Scholar 

  89. van Kan PL, Houk JC, Gibson AR (1993b) Output organization of intermediate cerebellum of the monkey. J Neurophysiol 69:57–73

    Article  Google Scholar 

  90. Veale JF (2014) Edinburgh Handedness Inventory - Short Form: a revised version based on confirmatory factor analysis. Laterality 19:164–177. https://doi.org/10.1080/1357650x.2013.783045

    Article  PubMed  Google Scholar 

  91. Yaguchi H, Takei T, Kowalski D, Suzuki T, Mabuchi K, Seki K (2015) Modulation of spinal motor output by initial arm postures in anesthetized monkeys. J Neurosci 35:6937–6945. https://doi.org/10.1523/jneurosci.3846-14.2015

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  92. Yiyun L, Jun Y, Dewald J (2014) Increased shoulder abduction loads decreases volitional finger extension in individuals with chronic stroke: Preliminary findings. Conf Proc IEEE Eng Med Biol Soc 2014:5808–5811. https://doi.org/10.1109/embc.2014.6944948

    Article  Google Scholar 

  93. Ziemann U, Rothwell JC, Ridding MC (1996) Interaction between intracortical inhibition and facilitation in human motor cortex. J Physiol 496:873–881

    CAS  Article  Google Scholar 

Download references

Funding

SG was funded by the NIH/National Center for Advancing Translational Sciences (NCATS) TL1TR001431, American Heart Association 17POST33410485, by K12HD093427 from the National Center for Medical Rehabilitation Research NIH/NICHD, and the Greenberg Family Foundation. SG and PSL were funded by Administration For Community Living, National Institute of Disability, Independent Living and Rehabilitation Research (NIDILRR) Rehabilitation Engineering Research Center (RERC) 90REGE0004.

Author information

Affiliations

Authors

Contributions

SG, MHL, PSL, and AWD conceived the research question. SG and MG executed the study including participant screening and recruitment, consenting, study-related testing, and data analysis. SG, MHL, PSL, and AWD interpreted the data. SG wrote the first draft of the manuscript; the final version was edited and approved by all authors.

Corresponding author

Correspondence to Shashwati Geed.

Ethics declarations

Ethics approval

Ethics approval for the study was obtained from the MedStar Health Research Institute’s IRB.

Consent to participate

All individuals provided written informed consent before participation.

Conflicts of interest

The authors report no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2440 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Geed, S., Grainger, M., Harris-Love, M.L. et al. Shoulder position and handedness differentially affect excitability and intracortical inhibition of hand muscles. Exp Brain Res 239, 1517–1530 (2021). https://doi.org/10.1007/s00221-021-06077-w

Download citation

Keywords

  • Evoked Potentials
  • Motor
  • Transcranial Magnetic Stimulation
  • Stroke
  • Functional Laterality
  • Motor Control
  • Upper Extremity