Skip to main content

Differences in perceived durations between plausible biological and non-biological stimuli

Abstract

Visual motion stimuli can sometimes distort our perception of time. This effect is dependent on the apparent speed of the moving stimulus, where faster stimuli are usually perceived lasting longer than slower stimuli. Although it has been shown that neural and cognitive processing of biological motion stimuli differ from non-biological motion stimuli, no study has yet investigated whether perceived durations of biological stimuli differ from non-biological stimuli across different speeds. Here, a prospective temporal reproduction task was used to assess that question. Biological motion stimuli consisted of a human silhouette running in place. Non-biological motion stimuli consisted of a rectangle moving in a pendular way. Amount and plausibility of movement for each stimulus and frame-rate (speed) were evaluated by an independent group of participants. Although the amount of movement perceived was positively correlated to frame rate both for biological and non-biological stimuli, movie clips involving biological motion stimuli were judged to last longer than non-biological motion stimuli only at frame rates for which movement was rated as plausible. These results suggest that plausible representations of biomechanical movement induce additional temporal distortions to those modulated by increases in stimulus speed. Moreover, most studies reporting neural and cognitive differences in the processing of biological and non-biological motion stimuli acquired neurophysiological data using fMRI. Here, we report differences in the processing of biological and non-biological motion stimuli across different speeds using functional near-infrared spectroscopy (fNIRS), a less costly and portable form of neurophysiological data acquisition.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Beauchamp MS, Lee K, Haxby JV, Martin A (2002) Parallel visual motion processing streams for manipulable objects and human movements. Neuron 34:149–159. https://doi.org/10.1016/S0896-6273(02)00642-6

    CAS  Article  PubMed  Google Scholar 

  2. Beauchamp MS, Lee KE, Haxby JV, Martin A (2003) fMRI responses to video and point-light displays of moving humans and manipulable objects. J Neurosci 15(7):991–1001. https://doi.org/10.1162/089892903770007380

    Article  Google Scholar 

  3. Blake R, Shiffar M (2007) Perception of human motion. Annu Rev Psychol 58:47–73. https://doi.org/10.1146/annurev.psych.57.102904.190152

    Article  PubMed  Google Scholar 

  4. Blakemore S, Decety J (2001) (2001) From the perception of action to the understanding of intention. Nat Neurosci 2:561–567. https://doi.org/10.1038/35086023

    CAS  Article  Google Scholar 

  5. Block RA (1990) Cognitive models of psychological time. Psychol Press, New York

    Google Scholar 

  6. Brown SW (1995) Time, change, and motion: the effects of stimulus movement on temporal perception. Perception Psychophys 57(1):105–116. https://doi.org/10.3758/BF03211853

    CAS  Article  Google Scholar 

  7. Bruno A, Cicchini MG (2016) Multiple channels of visual time perception. Behav Sci 8:131–139. https://doi.org/10.1016/j.cobeha.2016.02.028

    Article  Google Scholar 

  8. Buhusi CV, Meck WH (2005) What makes us tick? Functional and neural mechanisms of interval timing. Nat Rev Neurosci 6(10):755–765. https://doi.org/10.1038/nrn1764

    CAS  Article  PubMed  Google Scholar 

  9. Carrozzo M, Lacquaniti F (2013) Effects of speeding up or slowing down animate or inanimate motions on timing. Exp Brain Res 224(4):581–590. https://doi.org/10.1007/s00221-012-3338-7

    Article  PubMed  Google Scholar 

  10. Carrozzo M, Moscatelli A, Lacquaniti F (2010) Tempo Rubato: animacy speeds up time in the brain. PLoS ONE 5(12):1–13. https://doi.org/10.1371/journal.pone.0015638

    CAS  Article  Google Scholar 

  11. Castelli F, Happé F, Frith U, Frith C (2000) Movement and mind: a functional imaging study of perception and interpretation of complex intentional movement patterns. Neuroimage 2:314–325. https://doi.org/10.1006/nimg.2000.0612

    Article  Google Scholar 

  12. Cope M, Delpy DT, Reynolds EOR, Wray S, Wyatt J, Van der Zee P (1988) Methods of quantitating cerebral near infrared spectroscopy data. Adv Exp Med Biol 222:183–189

    CAS  Article  Google Scholar 

  13. Cui X, Bray S, Reiss AL (2010) Functional near infrared spectroscopy (NIRS) signal improvement based on negative correlation between oxygenated and deoxygenated hemoglobin dynamics. Neuroimage 49(4):3039–3046. https://doi.org/10.1016/j.neuroimage.2009.11.050

    CAS  Article  PubMed  Google Scholar 

  14. Droit-Volet S, Meck W (2007) How Emotions colour our perception of time. Trends Cognit Sci 11(12):504–513. https://doi.org/10.1016/j.tics.2007.09.008

    Article  Google Scholar 

  15. Eagleman D (2008) Human time perception and its illusions. Curr Opin Neurobiol 18(2):131–136. https://doi.org/10.1016/j.conb.2008.06.002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Fernandes CA, Garcia-Marques T. (2012) Ilusões Temporais: Paradigma Experimental. Laboratório de Psicologia ISPA 10(2): 265–286. https://doi.org/10.14417/lp.675

  17. Fraisse P (1984) Perception and estimation of time. Annu Rev Psychol 35:1–37. https://doi.org/10.1146/annurev.ps.35.020184.000245

    CAS  Article  PubMed  Google Scholar 

  18. Freyd JJ (1983) The mental representation of movement when static stimuli are viewed. Perception Psychophys 33(6):575–581. https://doi.org/10.3758/BF03202940

    CAS  Article  Google Scholar 

  19. Freyd JJ (1987) Dynamic mental representations. Psychol Rev 94(4):427–438. https://doi.org/10.1037/0033-295X.94.4.427

    CAS  Article  PubMed  Google Scholar 

  20. Gavazzi G, Bisio A, Pozzo T (2013) Time perception of visual motion is tuned by the motor representation of human actions. Sci Rep 3(1168):1–8. https://doi.org/10.1038/srep01168

    CAS  Article  Google Scholar 

  21. Gibson JJ. (1975) Events are perceivable but time is not. In: Fraser JT, Lawrence N (eds) The Study of Time II, Springer, Berlin, Heidelberg https://doi.org/10.1007/978-3-642-50121-0_22

  22. Grèzes J, Fonlupt P, Bertenthal B, Delon-Martin C, Segebarth C, Decety J (2001) Does perception of biological motion rely on specific brain regions? Neuroimage 13:775–785. https://doi.org/10.1006/nimg.2000.0740

    Article  PubMed  Google Scholar 

  23. Grossman E, Blake R (2001) Brain activity evoked by inverted and imagined motion. Vis Res 41:1475–1482. https://doi.org/10.1016/S0042-6989(00)00317-5

    CAS  Article  PubMed  Google Scholar 

  24. Grossman E, Donnelly M, Price R, Pickens D, Morgan V (2000) Brain areas involved in perception of biological motion. J Cognit Neurosci 12(5):711–720. https://doi.org/10.1016/S0896-6273(02)00897-8

    CAS  Article  Google Scholar 

  25. Herrington JD, Charlotte N, Schultz RT (2011) Biological motion task performance predicts superior temporal sulcus activity. Brain Cogn 77:372–381. https://doi.org/10.1016/S0042-6989(00)00317-5

    Article  PubMed  Google Scholar 

  26. Ishizu T, Noguchi A, Ito Y, Ayabe T, Kojima S (2009) Motor activity and imagery modulate the body-selective region in the occipital-temporal area: a near-infrared spectroscopy study. Neurosci Lett 465(1):85–89. https://doi.org/10.1016/j.neulet.2009.08.079

    CAS  Article  PubMed  Google Scholar 

  27. Johansson G (1973) Visual perception of biological motion and a model for its analysis. Perception Psychophys 14:201–211. https://doi.org/10.3758/BF03212378

    Article  Google Scholar 

  28. Kanai R, Paffen CLE, Hogendoorn H, Verstraten FAJ (2006) Time dilatation in dynamic visual display. J Vis 6:1421–1430. https://doi.org/10.1167/6.12.8

    Article  PubMed  Google Scholar 

  29. Kaneko S, Murakami I (2009) Perceived duration of visual motion increases with speed. J Vis 9(7):1–12. https://doi.org/10.1167/9.7.14

    Article  Google Scholar 

  30. Kossler L, Maillard L, Benhadid A, Vignal JP, Felblinger H, Vespignani M et al (2009) Automated cortical projection of EEG sensors: anatomical correlation via the internal 10–10 system. Neuroimage 46:64–72. https://doi.org/10.1016/j.neuroimage.2009.02.006

    Article  Google Scholar 

  31. Mather G, Murdoch L (1994) Gender discrimination in biological motion displays based on dynamic cues. Proc R Soc B 259:273–279. https://doi.org/10.1098/rspb.1994.0173

    Article  Google Scholar 

  32. Moscatelli A, Lacquaniti F (2011) The weight of time: gravitational force enhances discrimination of visual motion duration. J Vis. 11(4):1–7. https://doi.org/10.1167/11.4.5

    Article  Google Scholar 

  33. Nakayama K (1985) Biological image motion processing: a review. Vis Res 25(5):625–660. https://doi.org/10.1016/0042-6989(85)90171-3

    CAS  Article  PubMed  Google Scholar 

  34. Nather FC, Bueno JLO (2011) Static images with different induced intensities of human body movements affect subjective time. Percept Mot Skills 113(1):157–170. https://doi.org/10.2466/24.25.27.PMS.113.4.157-170

    Article  PubMed  Google Scholar 

  35. Nyman JT, Karlsson EPA, Antfolk J (2017) As time passes by: observed motion-speed and psychological time during video playback. PLoS ONE 12(6):1–21. https://doi.org/10.1371/journal.pone.0177855

    CAS  Article  Google Scholar 

  36. Orgs G, Bestmann S, Schuur F, Haggard P (2011) From body form to biological motion: the apparent velocity of human movement Biases subjective time. Psychol Sci 22(6):712–717. https://doi.org/10.1177/0956797611406446

    Article  PubMed  PubMed Central  Google Scholar 

  37. Orgs G, Bestmann S, Schuur F, Haggard P (2013) From body to biological motion: apparent velocity of human movement biases subjective time. Psychol Sci 22(6):712–717. https://doi.org/10.1177/0956797611406446

    Article  Google Scholar 

  38. Palmer SE (1999) Vision science: photons to phenomenology Mass. MIT Press, Cambridge

    Google Scholar 

  39. Pfeifer MD, Scholkmann F, Labruyère R (2018) Signal processing in functional near-infrared spectroscopy (fNIRS): methodological differences lead to different statistical results. Front Hum Neurosci 641(11):1–12. https://doi.org/10.3389/fnhum.2017.00641

    Article  Google Scholar 

  40. Rizzolatti G, Craighero L (2004) The mirror-neuron system. Annu Rev Neurosci 27:169–192. https://doi.org/10.1146/annurev.neuro.27.070203.144230

    CAS  Article  PubMed  Google Scholar 

  41. Sasaki K, Yamamoto K, Miura K (2013) The difference in speed sequence influences perceived duration. Perception 42:198–207. https://doi.org/10.1068/p7241

    Article  PubMed  Google Scholar 

  42. Savitzky A, Golay MJ (1964) Smoothing and differentiation of data by simplified last squares procedures. Anal Chem 36(8):1627–1639. https://doi.org/10.1021/ac60214a047

    CAS  Article  Google Scholar 

  43. Treisman M (1963) Temporal discrimination and the indifference interval. implications for a model of the internal clock. Psychol Monographs 77:1–31. https://doi.org/10.1037/h0093864

    CAS  Article  Google Scholar 

  44. Wang L, Jiang Y (2012) Life motion signals lengthen perceived temporal duration. Proc Natl Acad Sci USA 109(11):673–677. https://doi.org/10.1073/pnas.1115515109

    Article  Google Scholar 

  45. Witt ST, Meyerand ME, Laird AR (2008) Functional neuroimaging correlates of finger tapping task variations: a meta-analysis. Neuroimage 42(2):343–356. https://doi.org/10.1016/j.neuroimage.2008.04.025

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was funded by Universidade Federal do ABC (UFABC). The authors would like to thank Dr. Rodrigo Pavão, Dr. Francisco Nather, and the members of the Timing and Cognition Laboratory at UFABC (https://neuro.ufabc.edu.br/timing/) for useful discussions and suggestions on this study. MSC is a member of the Instituto Nacional de Ciência e Tecnologia sobre Comportamento, Cognição e Ensino, supported by the Brazilian National Research Council (CNPq, Grant # 465686/2014-1), the Coordination of Superior Level Staff Improvement (CAPES, Grant # 88887.136407/2017-00), and the São Paulo Research Foundation (FAPESP, Grant # 2014/50909-8).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Giuliana Martinatti Giorjiani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Francesca Frassinetti.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 381 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Giorjiani, G.M., Biazoli, C.E. & Caetano, M.S. Differences in perceived durations between plausible biological and non-biological stimuli. Exp Brain Res 239, 161–173 (2021). https://doi.org/10.1007/s00221-020-05904-w

Download citation

Keywords

  • Timing
  • fNIRS
  • Movement
  • Biological motion