Skip to main content
Log in

Efficacy of inhibitory control depends on procrastination and deceleration in saccade planning

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

A goal-directed flexible behavior warrants our ability to timely inhibit impending movements deemed inappropriate due to an abrupt change in the context. Race model of countermanding rapid saccadic eye movement posits a competition between a preparatory GO process and an inhibitory STOP process rising to reach a fixed threshold. Stop-signal response time (SSRT), which is the average time STOP takes to rise to the threshold, is widely used as a metric to assess the ability to revoke a movement. A reliable estimation of SSRT critically depends on the assumption of independence between GO and STOP process, which has been violated in many studies. In addition, the physiological correlate of stochastic rise of STOP process to a threshold remains unsubstantiated thus far. Here, we introduce a method to estimate the efficacy of inhibitory control on the premise of an alternative model that assumes deceleration of GO process following the stop-signal onset. The average reaction time increased exponentially with the increase in the maximum duration available to attenuate GO process by the stop-signal. Our method estimates saccade procrastination in anticipation of the stop-signal, and the rate of increase in attenuation on GO process. Unlike SSRT, these new metrics are independent of how the stopping performance varies with the delay between go- and stop-signal onsets. We reckon that these metrics together qualify to be considered as an efficient alternative to SSRT for the estimation of individuals’ ability to countermand saccades, especially in cases when the assumptions of race model are no longer valid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data may be shared in its raw form for review purpose.

References

  • Åkerfelt A, Colonius H, Diederich A (2006) Visual-tactile saccadic inhibition. Exp Brain Res 169:554–563

    PubMed  Google Scholar 

  • Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12:366–375

    CAS  PubMed  Google Scholar 

  • Alderson RM, Rapport MD, Kofler MJ (2007) Attention-deficit/hyperactivity disorder and behavioral inhibition: a meta-analytic review of the stop-signal paradigm. J Abnorm Child Psychol 35:745–758

    PubMed  Google Scholar 

  • Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13:266–271

    CAS  PubMed  Google Scholar 

  • Armstrong IT, Munoz DP (2003) Inhibitory control of eye movements during oculomotor countermanding in adults with attention-deficit hyperactivity disorder. Exp Brain Res 152:444–452

    CAS  PubMed  Google Scholar 

  • Aron AR (2011) From reactive to proactive and selective control: developing a richer model for stopping inappropriate responses. Biol Psychiatry 69:e55–e68

    PubMed  Google Scholar 

  • Aron AR, Poldrack RA (2006) Cortical and subcortical contributions to stop signal response inhibition: role of the subthalamic nucleus. J Neurosci 26:2424–2433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aron AR, Verbruggen F (2008) Stop the presses: dissociating a selective from a global mechanism for stopping. Psychol Sci 19:1146–1153

    PubMed  Google Scholar 

  • Aron AR, Durston S, Eagle DM et al (2007) Converging evidence for a fronto-basal-ganglia network for inhibitory control of action and cognition. J Neurosci 27:11860–11864

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aron AR, Robbins TW, Poldrack RA (2014) Inhibition and the right inferior frontal cortex: one decade on. Trends Cogn Sci 18:177–185

    PubMed  Google Scholar 

  • Association WM (2008) World medical association Declaration of Helsinki. Ethical principles for medical research involving human subjects. https://www.wma.net/wp-content/uploads/2018/07/DoH-Oct2008.pdf. Accessed 29 Mar 2020

  • Badcock JC, Michie PT, Johnson L, Combrinck J (2002) Acts of control in schizophrenia: dissociating the components of inhibition. Psychol Med 32:287–297

    CAS  PubMed  Google Scholar 

  • Baldwin SA, Fellingham GW (2013) Bayesian methods for the analysis of small sample multilevel data with a complex variance structure. Psychol Methods 18:151

    PubMed  Google Scholar 

  • Band GPH, Van Der Molen MW, Logan GD (2003) Horse-race model simulations of the stop-signal procedure. Acta Psychol 112:105–142

    Google Scholar 

  • Becker W, Jürgens R (1979) An analysis of the saccadic system by means of double step stimuli. Vis Res 19:967–983

    CAS  PubMed  Google Scholar 

  • Bekker EM, Overtoom CC, Kenemans JL et al (2005) Stopping and changing in adults with ADHD. Psychol Med 35:807–816

    CAS  PubMed  Google Scholar 

  • Bellgrove MA, Chambers CD, Vance A et al (2006) Lateralized deficit of response inhibition in early-onset schizophrenia. Psychol Med 36:495–505

    PubMed  Google Scholar 

  • Beuk J, Beninger RJ, Paré M (2014) Investigating a race model account of executive control in rats with the countermanding paradigm. Neuroscience 263:96–110

    CAS  PubMed  Google Scholar 

  • Bilder RM, Sabb FW, Cannon TD et al (2009) Phenomics: the systematic study of phenotypes on a genome-wide scale. Neuroscience 164:30–42

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bissett PG (2013) The countermanding task revisited: mimicry of race models. J Neurosci 33:12150–12151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bissett PG (2014) Evaluating the independent race model for the stop signal paradigm: context independence is violated at short stop signal delays. Dissertation, Vanderbilt University

  • Bissett PG, Poldrack RA, Logan GD (2019) Severe violations of independence in response inhibition tasks are pervasive and consequential. PsyArXiv. https://doi.org/10.31234/osf.io/kpa65

    Article  Google Scholar 

  • Boehler CN, Appelbaum LG, Krebs RM et al (2012) The influence of different stop-signal response time estimation procedures on behavior–behavior and brain–behavior correlations. Behav Brain Res 229:123–130

    PubMed  PubMed Central  Google Scholar 

  • Bompas A, Campbell AE, Sumner P (2020) Cognitive control and automatic interference in mind and brain: a unified model of saccadic inhibition and countermanding. Psychol Rev. https://doi.org/10.1037/rev0000181

    Article  PubMed  PubMed Central  Google Scholar 

  • Boucher L, Palmeri TJ, Logan GD, Schall JD (2007) Inhibitory control in mind and brain: an interactive race model of countermanding saccades. Psychol Rev 114:376

    PubMed  Google Scholar 

  • Brown SD, Heathcote A (2008) The simplest complete model of choice response time: linear ballistic accumulation. Cogn Psychol 57:153–178

    PubMed  Google Scholar 

  • Brown JW, Hanes DP, Schall JD, Stuphorn V (2008) Relation of frontal eye field activity to saccade initiation during a countermanding task. Exp Brain Res 190:135

    PubMed  PubMed Central  Google Scholar 

  • Cabel DWJ, Armstrong IT, Reingold E, Munoz DP (2000) Control of saccade initiation in a countermanding task using visual and auditory stop signals. Exp Brain Res 133:431–441

    CAS  PubMed  Google Scholar 

  • Camalier CR, Gotler A, Murthy A et al (2007) Dynamics of saccade target selection: race model analysis of double step and search step saccade production in human and macaque. Vis Res 47:2187–2211

    CAS  PubMed  Google Scholar 

  • Catani M, De Schotten MT (2008) A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex 44:1105–1132

    PubMed  Google Scholar 

  • Chamberlain SR, Fineberg NA, Blackwell AD et al (2006) Motor inhibition and cognitive flexibility in obsessive-compulsive disorder and trichotillomania. Am J Psychiatry 163:1282–1284

    PubMed  Google Scholar 

  • Chen W, de Hemptinne C, Miller AM et al (2020) Prefrontal-subthalamic hyperdirect pathway modulates movement inhibition in humans. Neuron. https://doi.org/10.1016/j.neuron.2020.02.012

    Article  PubMed  PubMed Central  Google Scholar 

  • Chikazoe J, Jimura K, Hirose S et al (2009) Preparation to inhibit a response complements response inhibition during performance of a stop-signal task. J Neurosci 29:15870–15877

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coe BC, Munoz DP (2017) Mechanisms of saccade suppression revealed in the anti-saccade task. Philos Trans R Soc B Biol Sci 372:20160192

    Google Scholar 

  • Colonius H, Diederich A (2018) Paradox resolved: stop signal race model with negative dependence. Psychol Rev 125:1051

    PubMed  Google Scholar 

  • Colonius H, Özyurt J, Arndt PA (2001) Countermanding saccades with auditory stop signals: testing the race model. Vis Res 41:1951–1968

    CAS  PubMed  Google Scholar 

  • Cronbach LJ, Meehl PE (1955) Construct validity in psychological tests. Psychol Bull 52:281

    CAS  PubMed  Google Scholar 

  • Eagle DM, Robbins TW (2003) Inhibitory control in rats performing a stop-signal reaction-time task: effects of lesions of the medial striatum and d-amphetamine. Behav Neurosci 117:1302

    CAS  PubMed  Google Scholar 

  • Elchlepp H, Lavric A, Chambers CD, Verbruggen F (2016) Proactive inhibitory control: a general biasing account. Cogn Psychol 86:27–61

    PubMed  PubMed Central  Google Scholar 

  • Emeric EE, Brown JW, Boucher L et al (2007) Influence of history on saccade countermanding performance in humans and macaque monkeys. Vis Res 47:35–49

    PubMed  Google Scholar 

  • Fillmore MT, Rush CR (2002) Impaired inhibitory control of behavior in chronic cocaine users. Drug Alcohol Depend 66:265–273

    PubMed  Google Scholar 

  • Frank MJ (2006) Hold your horses: a dynamic computational role for the subthalamic nucleus in decision making. Neural Netw 19:1120–1136

    PubMed  Google Scholar 

  • Gulberti A, Arndt P, Colonius H (2014) Stopping eyes and hands: evidence for non-independence of stop and go processes and for a separation of central and peripheral inhibition. Front Hum Neurosci 8:61

    PubMed  PubMed Central  Google Scholar 

  • Hanes DP, Carpenter RHS (1999) Countermanding saccades in humans. Vis Res 39:2777–2791

    CAS  PubMed  Google Scholar 

  • Hanes DP, Schall JD (1995) Countermanding saccades in macaque. Vis Neurosci 12:929–937

    CAS  PubMed  Google Scholar 

  • Hanes DP, Schall JD (1996) Neural control of voluntary movement initiation. Science 80(274):427–430

    Google Scholar 

  • Hanes DP, Patterson WF, Schall JD (1998) Role of frontal eye fields in countermanding saccades: visual, movement, and fixation activity. J Neurophysiol 79:817–834

    CAS  PubMed  Google Scholar 

  • Hasegawa RP, Peterson BW, Goldberg ME (2004) Prefrontal neurons coding suppression of specific saccades. Neuron 43:415–425

    CAS  PubMed  Google Scholar 

  • Hox JJ, van de Schoot R, Matthijsse S (2012) How few countries will do? Comparative survey analysis from a Bayesian perspective. Surv Res Methods 6(2):87–93. https://doi.org/10.18148/srm/2012.v6i2.5033

    Article  Google Scholar 

  • Indrajeet I, Ray S (2019) Detectability of stop-signal determines magnitude of deceleration in saccade planning. Eur J Neurosci 49:232–249

    PubMed  Google Scholar 

  • Jana S, Hannah R, Muralidharan V, Aron AR (2020) Temporal cascade of frontal, motor and muscle processes underlying human action-stopping. Elife 9:e50371

    PubMed  PubMed Central  Google Scholar 

  • Jantz JJ, Watanabe M, Everling S, Munoz DP (2013) Threshold mechanism for saccade initiation in frontal eye field and superior colliculus. J Neurophysiol 109:2767–2780

    PubMed  Google Scholar 

  • JASP Team (2019) JASP (version 0.11.1) [computer software]

  • Joti P, Kulashekhar S, Behari M, Murthy A (2007) Impaired inhibitory oculomotor control in patients with Parkinson’s disease. Exp Brain Res 177:447–457

    PubMed  Google Scholar 

  • Lappin JS, Eriksen CW (1966) Use of a delayed signal to stop a visual reaction-time response. J Exp Psychol 72(6):805

    Google Scholar 

  • Lau MA, Christensen BK, Hawley LL et al (2007) Inhibitory deficits for negative information in persons with major depressive disorder. Psychol Med 37:1249–1259

    PubMed  Google Scholar 

  • Lee S-Y, Song X-Y (2004) Evaluation of the Bayesian and maximum likelihood approaches in analyzing structural equation models with small sample sizes. Multivar Behav Res 39:653–686

    Google Scholar 

  • Leotti LA, Wager TD (2010) Motivational influences on response inhibition measures. J Exp Psychol Hum Percept Perform 36:430

    PubMed  PubMed Central  Google Scholar 

  • Leung H-C, Cai W (2007) Common and differential ventrolateral prefrontal activity during inhibition of hand and eye movements. J Neurosci 27:9893–9900

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li C-SR, Yan P, Sinha R, Lee T-W (2008) Subcortical processes of motor response inhibition during a stop signal task. Neuroimage 41:1352–1363

    PubMed  PubMed Central  Google Scholar 

  • Li CR, Luo X, Yan P et al (2009) Altered impulse control in alcohol dependence: neural measures of stop signal performance. Alcohol Clin Exp Res 33:740–750

    PubMed  PubMed Central  Google Scholar 

  • Lipszyc J, Schachar R (2010) Inhibitory control and psychopathology: a meta-analysis of studies using the stop signal task. J Int Neuropsychol Soc 16:1064–1076

    PubMed  Google Scholar 

  • Lo C-C, Boucher L, Paré M et al (2009) Proactive inhibitory control and attractor dynamics in countermanding action: a spiking neural circuit model. J Neurosci 29:9059–9071

    CAS  PubMed  PubMed Central  Google Scholar 

  • Logan GD (1981) Attention, automaticity, and the ability to stop a speeded choice response. Atten Perform IX:205–222

    Google Scholar 

  • Logan GD (1994) On the ability to inhibit thought and action: a users’ guide to the stop signal paradigm. In: Dagenbach D, Carr TH (eds) Inhibitory processes in attention, memory, and language. Academic Press, San Diego, CA, pp 189–239

    Google Scholar 

  • Logan GD, Cowan WB (1984) On the ability to inhibit thought and action: a theory of an act of control. Psychol Rev 91:295–327

    Google Scholar 

  • Logan GD, Cowan WB, Davis KA (1984) On the ability to inhibit simple and choice reaction time responses: a model and a method. J Exp Psychol Hum Percept Perform 10:276

    CAS  PubMed  Google Scholar 

  • Logan GD, Yamaguchi M, Schall JD, Palmeri TJ (2015) Inhibitory control in mind and brain 2.0: blocked-input models of saccadic countermanding. Psychol Rev 122:115

    PubMed  PubMed Central  Google Scholar 

  • Maizey L, Evans CJ, Muhlert N, Verbruggen F, Chambers CD, Allen CP (2020) Cortical and subcortical functional specificity associated with response inhibition. NeuroImage. https://doi.org/10.1016/j.neuroimage.2020.117110

    Article  PubMed  Google Scholar 

  • Mallet N, Schmidt R, Leventhal D et al (2016) Arkypallidal cells send a stop signal to striatum. Neuron 89:308–316

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marzocchi GM, Oosterlaan J, Zuddas A et al (2008) Contrasting deficits on executive functions between ADHD and reading disabled children. J Child Psychol Psychiatry 49:543–552

    PubMed  Google Scholar 

  • Matzke D, Love J, Wiecki TV et al (2013) Release the BEESTS: Bayesian estimation of ex-Gaussian stop-signal reaction time distributions. Front Psychol 4:918

    PubMed  PubMed Central  Google Scholar 

  • Matzke D, Hughes M, Badcock JC et al (2017a) Failures of cognitive control or attention? The case of stop-signal deficits in schizophrenia. Atten Percept Psychophys 79:1078–1086

    PubMed  PubMed Central  Google Scholar 

  • Matzke D, Love J, Heathcote A (2017b) A Bayesian approach for estimating the probability of trigger failures in the stop-signal paradigm. Behav Res Methods 49:267–281

    PubMed  Google Scholar 

  • Matzke D, Verbruggen F, Logan GD (2018) The stop-signal paradigm. Stevens’ Handb Exp Psychol Cogn Neurosci 5:1–45

    Google Scholar 

  • Middlebrooks PG, Zandbelt BB, Logan GD, Palmeri TJ, Schall JD (2020) Countermanding perceptual decision-making. iScience 23(1):100777. https://doi.org/10.1016/j.isci.2019.100777

    Article  PubMed  Google Scholar 

  • Munoz DP, Waitzman DM, Wurtz RH (1996) Activity of neurons in monkey superior colliculus during interrupted saccades. J Neurophysiol 75:2562–2580

    CAS  PubMed  Google Scholar 

  • Muthén B, Asparouhov T (2012) Bayesian structural equation modeling: a more flexible representation of substantive theory. Psychol Methods 17:313

    PubMed  Google Scholar 

  • Noorani I, Carpenter RHS (2016) The LATER model of reaction time and decision. Neurosci Biobehav Rev 64:229–251

    PubMed  Google Scholar 

  • Ollman RT (1973) Simple reactions with random countermanding of the “go” signal. Atten Perform 4:571–581

    Google Scholar 

  • Özyurt J, Colonius H, Arndt PA (2003) Countermanding saccades: evidence against independent processing of go and stop signals. Percept Psychophys 65:420–428

    PubMed  Google Scholar 

  • Pani P, Giarrocco F, Giamundo M et al (2018) Visual salience of the stop signal affects the neuronal dynamics of controlled inhibition. Sci Rep 8:14265

    PubMed  PubMed Central  Google Scholar 

  • Paré M, Hanes DP (2003) Controlled movement processing: superior colliculus activity associated with countermanded saccades. J Neurosci 23:6480–6489

    PubMed  PubMed Central  Google Scholar 

  • Poldrack RA, Congdon E, Triplett W et al (2016) A phenome-wide examination of neural and cognitive function. Sci Data 3:160110

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ray S, Schall JD, Murthy A (2004) Programming of double-step saccade sequences: modulation by cognitive control. Vis Res 44:2707–2718

    PubMed  Google Scholar 

  • Ray S, Pouget P, Schall JD (2009) Functional distinction between visuomovement and movement neurons in macaque frontal eye field during saccade countermanding. J Neurophysiol 102:3091–3100

    PubMed  PubMed Central  Google Scholar 

  • Ray S, Bhutani N, Kapoor V (2011) Trans-saccadic processing of visual and motor planning during sequential eye movements. Exp Brain Res 215:13–25

    PubMed  Google Scholar 

  • Ray S, Bhutani N, Murthy A (2012) Mutual inhibition and capacity sharing during parallel preparation of serial eye movements. J Vis 12:17

    PubMed  Google Scholar 

  • Rubia K, Smith AB, Brammer MJ, Taylor E (2003) Right inferior prefrontal cortex mediates response inhibition while mesial prefrontal cortex is responsible for error detection. Neuroimage 20:351–358

    PubMed  Google Scholar 

  • Rubia K, Smith AB, Taylor E, Brammer M (2007) Linear age-correlated functional development of right inferior fronto-striato-cerebellar networks during response inhibition and anterior cingulate during error-related processes. Hum Brain Mapp 28:1163–1177

    PubMed  PubMed Central  Google Scholar 

  • Salinas E, Stanford TR (2013) The countermanding task revisited: fast stimulus detection is a key determinant of psychophysical performance. J Neurosci 33:5668–5685

    CAS  PubMed  PubMed Central  Google Scholar 

  • Savostyanov AN, Tsai AC, Liou M et al (2009) EEG-correlates of trait anxiety in the stop-signal paradigm. Neurosci Lett 449:112–116

    CAS  PubMed  Google Scholar 

  • Schall JD (2004) On building a bridge between brain and behavior. Annu Rev Psychol 55:23–50

    PubMed  Google Scholar 

  • Schall JD, Stuphorn V, Brown JW (2002) Monitoring and control of action by the frontal lobes. Neuron 36:309–322

    CAS  PubMed  Google Scholar 

  • Schall JD, Palmeri TJ, Logan GD (2017) Models of inhibitory control. Philos Trans R Soc B Biol Sci 372:20160193

    Google Scholar 

  • Schaum M, Pinzuti E, Sebastian A et al (2020) Cortical network mechanisms of response inhibition. BioRxiv. https://doi.org/10.1101/2020.02.09.940841

    Article  Google Scholar 

  • Schmidt R, Leventhal DK, Mallet N et al (2013) Canceling actions involves a race between basal ganglia pathways. Nat Neurosci 16:1118–1124

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shanahan MA, Pennington BF, Yerys BE et al (2006) Processing speed deficits in attention deficit/hyperactivity disorder and reading disability. J Abnorm Child Psychol 34:584

    Google Scholar 

  • Sharika KM, Neggers SFW, Gutteling TP et al (2013) Proactive control of sequential saccades in the human supplementary eye field. Proc Natl Acad Sci 110:E1311–E1320

    CAS  PubMed  Google Scholar 

  • Sharp DJ, Bonnelle V, De Boissezon X et al (2010) Distinct frontal systems for response inhibition, attentional capture, and error processing. Proc Natl Acad Sci 107:6106–6111

    CAS  PubMed  Google Scholar 

  • Shenoy P, Rao RP, Yu AJ (2010) A rational decision-making framework for inhibitory control. In: Proceedings of the 23rd international conference on neural information processing systems, vol 2, pp 2146–2154, December 2010

  • Smittenaar P, Rutledge RB, Zeidman P et al (2015) Proactive and reactive response inhibition across the lifespan. PLoS ONE 10:e0140383

    PubMed  PubMed Central  Google Scholar 

  • Stegmueller D (2013) How many countries for multilevel modeling? A comparison of frequentist and Bayesian approaches. Am J Pol Sci 57:748–761

    Google Scholar 

  • Stenling A, Ivarsson A, Johnson U, Lindwall M (2015) Bayesian structural equation modeling in sport and exercise psychology. J Sport Exerc Psychol 37:410–420

    PubMed  Google Scholar 

  • Stuphorn V, Schall JD (2006) Executive control of countermanding saccades by the supplementary eye field. Nat Neurosci 9:925

    CAS  PubMed  Google Scholar 

  • Tan J, Iyer KK, Tang AD et al (2019) Modulating functional connectivity with non-invasive brain stimulation for the investigation and alleviation of age-associated declines in response inhibition: a narrative review. Neuroimage 185:490–512

    PubMed  Google Scholar 

  • Thakkar KN, Schall JD, Boucher L et al (2011) Response inhibition and response monitoring in a saccadic countermanding task in schizophrenia. Biol Psychiatry 69:55–62

    PubMed  Google Scholar 

  • Tombu M, Jolicœur P (2003) A central capacity sharing model of dual-task performance. J Exp Psychol Hum Percept Perform 29:3

    PubMed  Google Scholar 

  • Verbruggen F, Logan GD (2008a) Response inhibition in the stop-signal paradigm. Trends Cogn Sci 12:418–424

    PubMed  PubMed Central  Google Scholar 

  • Verbruggen F, Logan GD (2008b) Automatic and controlled response inhibition: associative learning in the go/no-go and stop-signal paradigms. J Exp Psychol Gen 137:649

    PubMed  PubMed Central  Google Scholar 

  • Verbruggen F, Logan GD (2009) Models of response inhibition in the stop-signal and stop-change paradigms. Neurosci Biobehav Rev 33:647–661

    PubMed  Google Scholar 

  • Verbruggen F, Logan GD (2015) Evidence for capacity sharing when stopping. Cognition 142:81–95

    PubMed  PubMed Central  Google Scholar 

  • Verbruggen F, Aron AR, Band GPH et al (2019) A consensus guide to capturing the ability to inhibit actions and impulsive behaviors in the stop-signal task. Elife 8:e46323

    PubMed  PubMed Central  Google Scholar 

  • Vince MA (1948) The intermittency of control movements and the psychological refractory period. Br J Psychol 38:149–157

    CAS  Google Scholar 

  • Wanless SB, Rimm-Kaufman SE, Abry T et al (2015) Engagement in training as a mechanism to understanding fidelity of implementation of the responsive classroom approach. Prev Sci 16:1107–1116

    PubMed  Google Scholar 

  • Wessel JR, Aron AR (2013) Unexpected events induce motor slowing via a brain mechanism for action-stopping with global suppressive effects. J Neurosci 33:18481–18491

    CAS  PubMed  PubMed Central  Google Scholar 

  • White CN, Congdon E, Mumford JA et al (2014) Decomposing decision components in the stop-signal task: a model-based approach to individual differences in inhibitory control. J Cogn Neurosci 26:1601–1614

    PubMed  PubMed Central  Google Scholar 

  • Zandbelt BB, Vink M (2010) On the role of the striatum in response inhibition. PLoS ONE 5:e13848

    PubMed  PubMed Central  Google Scholar 

  • Zandbelt BB, Bloemendaal M, Hoogendam JM et al (2013) Transcranial magnetic stimulation and functional MRI reveal cortical and subcortical interactions during stop-signal response inhibition. J Cogn Neurosci 25:157–174

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Dept. of Sc. and Tech., Govt. of India [SR/CSRI/26/2014]. The authors in order were supported by fellowships from University Grants Commission and Wellcome Trust DBT India Alliance [IA/I/13/2/501015].

Author information

Authors and Affiliations

Authors

Contributions

II collected and analysed data; SR designed the task and model, both authors wrote the manuscript.

Corresponding authors

Correspondence to Indrajeet Indrajeet or Supriya Ray.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Winston D Byblow.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Indrajeet, I., Ray, S. Efficacy of inhibitory control depends on procrastination and deceleration in saccade planning. Exp Brain Res 238, 2417–2432 (2020). https://doi.org/10.1007/s00221-020-05901-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-020-05901-z

Keywords

Navigation