A single bout of moderate intensity exercise improves cognitive flexibility: evidence from task-switching

Abstract

Executive function entails the core components of response  inhibition, working memory and cognitive flexibility. An accumulating literature has shown that a single bout of exercise improves the response inhibition  and working memory components of executive function; however, limited work has examined a putative exercise-related improvement to cognitive flexibility. To address this limitation, Experiment 1 entailed a 20-min session of moderate intensity aerobic exercise (via cycle ergometer), and pre- and post-exercise cognitive flexibility was examined via a task-switching paradigm involving alternating pro- and antisaccades (AABB: A = prosaccade, B = antisaccade). In Experiment 2, participants sat on the cycle ergometer without exercising (i.e., rest break) and the same AABB paradigm was examined pre- and post-break. We used an AABB pro- and antisaccade paradigm because previous work has shown that a prosaccade preceded by an antisaccade exhibits a reliable—and large magnitude—increase in reaction time, whereas the converse switch does not (i.e., the unidirectional prosaccade switch-cost). Experiment 1 showed a unidirectional prosaccade switch-cost pre-exercise (p = .012)—but not post-exercise (p = .30), and a two one-sided t test indicated that the latter comparison was within an equivalence boundary (p < .01). In contrast, Experiment 2 revealed a unidirectional prosaccade switch-cost at pre- and post-break assessments (ps < .01). Accordingly, our results indicate that a single bout of exercise improves cognitive flexibility and provides convergent evidence that exercise improves global components of executive function.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Notes

  1. 1.

    Tsai et al. (2016) included separate groups of participants who were classified as being higher- (i.e., VO2max > 75th percentile) and lower- (i.e., VO2max < 75th percentile) fit. The authors reported a post-exercise reduction in task-switch-costs for the high-fit group but not the low-fit group. This result is consistent with some evidence that higher-fit individuals accrue a larger magnitude post-exercise benefit to executive function (Chang et al. 2012). Notably, however, such a result is not in keeping with a recent meta-analysis arguing that low- and higher-fit individuals accrue a similar post-exercise benefit to executive function (Ludyga et al. 2016).

References

  1. Allport DA, Styles EA, Hsieh S (1994) Shifting intentional set: exploring the dynamic control of tasks. In: Umiltà C, Moscovitch M (eds) Attention and performance 15: conscious and nonconscious information processing. The MIT Press, Cambridge, pp 421–452

    Google Scholar 

  2. Amireault S, Godin G, Lacombe J, Sabiston CM (2015) The use of the Godin-Shephard leisure-time physical activity questionnaire in oncology research: a systematic review. BMC Med Res Methodol 15:60

    PubMed  PubMed Central  Google Scholar 

  3. Anish EJ (2014) Exercise and its effects on the central nervous system. Curr Sports Med Reports 4:18–23

    Google Scholar 

  4. Basso JC, Suzuki WA (2017) The effects of acute exercise on mood, cognition, neurophysiology, and neurochemical pathways: a review. Brain Plast 2:127–152

    PubMed  PubMed Central  Google Scholar 

  5. Becker W, Fuchs AF (1969) Further properties of the human saccadic system: eye movements and correction saccades with and without visual fixation points. Vision Res 9:1247–1258

    CAS  PubMed  Google Scholar 

  6. Bledowski C, Prvulovic D, Hoechstetter K, Scherg M, Wibral M, Goebel R, Linden DE (2004) Localizing P300 generators in visual target and distractor processing: a combined event-related potential and functional magnetic resonance imaging study. J Neurosci 24:9353–9360

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Brainard DH (1997) The psychophysics toolbox. Spat Vis 10:433–436

    CAS  PubMed  Google Scholar 

  8. Brown MRG, Vilis T, Everling S (2007) Frontoparietal activation with preparation for antisaccades. J Neurophysiol 98:1751–1762

    PubMed  Google Scholar 

  9. Chan JL, DeSouza JF (2013) The effects of attentional load on saccadic task switching. Exp Brain Res 227:301–309

    PubMed  Google Scholar 

  10. Chang YK, Labban JD, Gapin JI, Etnier JL (2012) The effects of acute exercise on cognitive performance: a meta-analysis. Brain Res 1453:87–101

    CAS  PubMed  Google Scholar 

  11. Chu CH, Alderman BL, Wei GX, Chang YK (2015) Effects of acute aerobic exercise on motor response inhibition: an ERP study using the stop-signal task. J Sport Health Sci 4:73–81

    Google Scholar 

  12. Colcombe SJ, Kramer AF, Erickson KI, Scalf P, McAuley E, Cohen NJ, Webb A, Jerome GJ, Marquez DX, Elavsky S (2004) Cardiovascular fitness, cortical plasticity, and aging. Proc Natl Ac Sci 101:3316–3321

    CAS  Google Scholar 

  13. Coles K, Tomporowski PD (2008) Effects of acute exercise on executive processing, short-term and long-term memory. J Sports Sci 26:333–344

    PubMed  Google Scholar 

  14. Connolly JD, Goodale MA, Desouza JF, Menon RS, Vilis T (2000) A comparison of frontoparietal fmri activation during anti-saccades and anti-pointing. J Neurophysiol 84:1645–1655

    CAS  PubMed  Google Scholar 

  15. Cornelissen FW, Peters EM, Palmer J (2002) The Eyelink toolbox: eye tracking with MATLAB and the psychophysics toolbox. Behav Res Meth Instrum Comput 34:613–617

    Google Scholar 

  16. Cumming G (2013) Understanding the new statistics: effect sizes, confidence intervals, and meta-analysis. Routledge, New York

    Google Scholar 

  17. Curtis CE, D’Esposito M (2003) Success and failure suppressing reflexive behavior. J Cogn Neurosci 15:409–418

    PubMed  Google Scholar 

  18. Dafoe JM, Armstrong IT, Munoz DP (2007) The influence of stimulus direction and eccentricity on pro-and anti-saccades in humans. Exp Brain Res 179:563–570

    PubMed  Google Scholar 

  19. Derrfuss J, Brass M, Neumann J, von Cramon DY (2005) Involvement of the inferior frontal junction in cognitive control: meta-analyses of switching and Stroop studies. Hum Brain Mapp 25:22–34

    PubMed  PubMed Central  Google Scholar 

  20. DeSimone JC, Weiler J, Aber GS, Heath M (2014) The unidirectional prosaccade switch-cost: correct and error antisaccades differentially influence the planning times for subsequent prosaccades. Vis Res 96C:17–24

    Google Scholar 

  21. DeSouza JF, Menon RS, Everling S (2003) Preparatory set associated with pro-saccades and anti-saccades in humans investigated with event-related fMRI. J Neurophysiol 89:1016–1023

    PubMed  Google Scholar 

  22. Diamond A (2013) Executive functions. Annu Rev Psychol 64:135–168

    PubMed  Google Scholar 

  23. Dinoff A, Herrmann N, Swardfager W, Lanctôt KL (2017) The effect of acute exercise on blood concentrations of brain-derived neurotrophic factor in healthy adults: a meta-analysis. Eur J Neurosci 46:1635–1646

    PubMed  Google Scholar 

  24. Dirk K, Belfry GR, Heath M (2019) Exercise and executive function during follicular and luteal menstrual cycle phases. Med Sci Sport Exerc 52:919–927

    Google Scholar 

  25. Donchin E, Coles MG (1988) Is the P300 component a manifestation of context updating? Behav Brain Sci 11:357–374

    Google Scholar 

  26. Edelman JA, Goldberg ME (2001) Dependence of saccade-related activity in the primate superior colliculus on visual target presence. J Neurophysiol 86:676–691

    CAS  PubMed  Google Scholar 

  27. Etnier JL, Nowell PM, Landers DM, Sibley BA (2006) A meta-regression to examine the relationship between aerobic fitness and cognitive performance. Brain Res Rev 52:119–130

    PubMed  Google Scholar 

  28. Everling S, Johnston K (2013) Control of the superior colliculus by the lateral prefrontal cortex. Philos Trans R Soc Lond B Biol Sci 368:20130068

    PubMed  PubMed Central  Google Scholar 

  29. Fischer B, Weber H (1992) Characteristics of “anti” saccades in man. Exp Brain Res 89:415–424

    CAS  PubMed  Google Scholar 

  30. Fitts PM (1954) The information capacity of the human motor system in controlling the amplitude of movement. J Exp Psychol 47:381

    CAS  PubMed  Google Scholar 

  31. Gillen C, Heath M (2014) Target frequency influences antisaccade endpoint bias: evidence for perceptual averaging. Vis Res 105:151–158

    PubMed  Google Scholar 

  32. Gillen C, Weiler J, Heath M (2013) Stimulus-driven saccades are characterized by an invariant undershooting bias: no evidence for a range effect. Exp Brain Res 230:165–174

    PubMed  Google Scholar 

  33. Godin G (2011) The Godin-Shephard leisure-time physical activity questionnaire. Hlth Fit J Can 4:18–22

    Google Scholar 

  34. Hallett PE (1978) Primary and secondary saccades to goals defined by instructions. Vis Res 8:1279–1296

    Google Scholar 

  35. Heath M, Weiler J, Marriott K, Welsh TN (2011) Vector inversion diminishes the online control of antisaccades. Exp Brain Res 209:117–127

    PubMed  Google Scholar 

  36. Heath M, Gillen C, Weiler J (2015) The antisaccade task: vector inversion contributes to a statistical summary representation of target eccentricities. J Vis 15:4

    PubMed  Google Scholar 

  37. Heath M, Gillen C, Samani A (2016) Alternating between pro- and antisaccades: switch-costs manifest via decoupling the spatial relations between stimulus and response. Exp Brain Res 234:853–865

    PubMed  Google Scholar 

  38. Heath M, Petrella A, Blazevic J, Lim D, Pelletier A, Belfry GR (2018) A post-exercise facilitation of executive function is independent of aerobically supported metabolic costs. Neuropsychologia 120:65–74

    PubMed  Google Scholar 

  39. Hillman CH, Snook EM, Jerome GJ (2003) Acute cardiovascular exercise and executive control function. Int J Psychophysiol 48:307–314

    PubMed  Google Scholar 

  40. Hillman CH, Kramer AF, Belopolsky AV, Smith DP (2006) A cross-sectional examination of age and physical activity on performance and event-related brain potentials in a task switching paradigm. Int J Psychophysiol 59:30–39

    PubMed  Google Scholar 

  41. Johnson L, Addamo PK, Raj IS, Borkoles E, Wyckelsma V, Cyarto E, Polman RC (2016) An acute bout of exercise improves the cognitive performance of older adults. J Aging Phys Act 24:591–598

    PubMed  Google Scholar 

  42. Kamijo K, Takeda Y (2010) Regular physical activity improves executive function during task switching in young adults. Int J Psychophysiol 75:304–311

    PubMed  Google Scholar 

  43. Kleiner M, Brainard D, Pelli D (2007) What’s new in Psychtoolbox-3? Perception, 36, ECVP Abstract Supplement

  44. Knaepen K, Goekint M, Heyman EM, Meeusen R (2010) Neuroplasticity—exercise-induced response of peripheral brain-derived neurotrophic factor. Sports Med 40:765–801

    PubMed  Google Scholar 

  45. Kramer AF, Hahn S, Cohen NJ, Banich MT, McAuley E, Harrison CR, Chason J, Vakil E, Bardell L, Boileau RA, Colcombe A (1999) Ageing, fitness and neurocognitive function. Nature 400:418

    CAS  PubMed  Google Scholar 

  46. Kubesch S, Bretschneider V, Freudenmann R, Weidenhammer N, Lehmann M, Spitzer M, Gron G (2003) Aerobic endurance exercise improves executive functions in depressed patients. J Clin Psychiatry 64:1005–1012

    PubMed  Google Scholar 

  47. Lambourne K, Tomporowski P (2010) The effect of exercise-induced arousal on cognitive task performance: a meta-regression analysis. Brain Res 1341:12–24

    CAS  PubMed  Google Scholar 

  48. Leckie RL, Oberlin LE, Voss MW et al (2014) BDNF mediates improvements in executive function following a 1-year exercise intervention. Front Hum Neurosci 8:985

    PubMed  PubMed Central  Google Scholar 

  49. Lemay M, Proteau L (2001) A distance effect in a manual aiming task to remembered targets: a test of three hypotheses. Exp Brain Res 140:357–368

    CAS  PubMed  Google Scholar 

  50. Li L, Wang M, Zhao QJ, Fogelson N (2012) Neural mechanisms underlying the cost of task switching: an ERP study. PLoS ONE 7:e42233

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Loftus GR, Masson ME (1994) Using confidence intervals in within-subject designs. Psychon Bull Rev 1:476–490

    CAS  PubMed  Google Scholar 

  52. Ludyga S, Gerber M, Brand S, Holsboer-Trachsler E, Pühse U (2016) Acute effects of moderate aerobic exercise on specific aspects of executive function in different age and fitness groups: a meta-analysis. Psychophysiol 53:1611–1626

    Google Scholar 

  53. McMorris T, Sproule J, Turner A, Hale BJ (2011) Acute, intermediate intensity exercise, and speed and accuracy in working memory tasks: a meta-analytical comparison of effects. Physiol Behav 102:421–428

    CAS  PubMed  Google Scholar 

  54. Moore CI, Cao R (2008) The hemo-neural hypothesis: on the role of blood flow in information processing. J Neurophysiol 99:2035–2047

    PubMed  Google Scholar 

  55. Munoz DP, Everling S (2004) Look away: the anti-saccade task and the voluntary control of eye movement. Nat Rev Neurosci 5:218–228

    CAS  PubMed  Google Scholar 

  56. Nee DE, Wager TD, Jonides J (2007) Interference resolution: insights from a meta-analysis of neuroimaging tasks. Cogn Affect Behav Neurosci 7:1–17

    PubMed  Google Scholar 

  57. Nowrangi MA, Lyketsos C, Rao V, Munro CA (2014) Systematic review of neuroimaging correlates of executive functioning: converging evidence from different clinical populations. J Neuropsychiatry Clin Neurosci 26:114–125

    PubMed  PubMed Central  Google Scholar 

  58. Ogoh S, Ainslie PN (2009) Regulatory mechanisms of cerebral blood flow during exercise: new concepts. Exerc Sport Sci Rev 37:123–129

    PubMed  Google Scholar 

  59. Petrella AF, Belfry G, Heath M (2019) Older adults elicit a single bout post-exercise executive benefit across a continuum of aerobically supported metabolic intensities. Brain Res 1712:197–206

    CAS  PubMed  Google Scholar 

  60. Pierrot-Deseilligny CH, Rivaud S, Gaymard B, Agid Y (1991) Cortical control of reflexive visually-guided saccades. Brain 114:1473–1485

    PubMed  Google Scholar 

  61. Pierrot-Deseilligny C, Rivaud S, Gaymard B, Müri R, Vermersch AI (1995) Cortical control of saccades. Ann Neurol 37:557–567

    CAS  PubMed  Google Scholar 

  62. Scudder MR, Drollette ES, Pontifex MB, Hillman CH (2012) Neuroelectric indices of goal maintenance following a single bout of physical activity. Biol Psychol 89:528–531

    PubMed  Google Scholar 

  63. Shukla DS (2020) Oculomotor task-switching performance improves and persists following a single bout of aerobic exercise. Western University Electronics Thesis and Dissertation Repository. https://ir.lib.uwo.ca/etd

  64. Tari B, Fadel MA, Heath M (2019) Response suppression produces a switch-cost for spatially compatible saccades. Exp Brain Res 237:1195–1203

    PubMed  Google Scholar 

  65. Tomporowski PD, Ganio MS (2006) Short-term effects of aerobic exercise on executive processing, memory, and emotional reactivity. Int J Sport Exerc Psychol 4:57–72

    Google Scholar 

  66. Tomporowski PD, Davis CL, Lambourne K, Gregoski M, Tkacz J (2008) Task switching in overweight children: effects of acute exercise and age. J Sport Exerc Psychol 30:497–511

    PubMed  PubMed Central  Google Scholar 

  67. Tsai CL, Pan CY, Chen FC, Wang CH, Chou FY (2016) Effects of acute aerobic exercise on a task-switching protocol and brain-derived neurotrophic factor concentrations in young adults with different levels of cardiorespiratory fitness. Exp Physiol 101:836–850

    CAS  PubMed  Google Scholar 

  68. United States, Department of Health, and Human Services (1996) Physical activity and health: a report of the surgeon general. Diane Publishing, United States

    Google Scholar 

  69. Weiler J, Heath M (2012a) The prior-antisaccade effect influences the planning and online control of prosaccades. Exp Brain Res 216:545–552

    PubMed  Google Scholar 

  70. Weiler J, Heath M (2012b) Task-switching in oculomotor control: unidirectional switch-cost when alternating between pro- and antisaccades. Neurosci Lett 530:150–154

    CAS  PubMed  Google Scholar 

  71. Weiler J, Heath M (2014a) Oculomotor task switching: alternating from a nonstandard to a standard response yields the unidirectional prosaccade switch-cost. J Neurophysiol 112:2176–2184

    PubMed  Google Scholar 

  72. Weiler J, Heath M (2014b) Repetitive antisaccade execution does not increase the unidirectional prosaccade switch-cost. Acta Psychol (Amst) 146:67–72

    Google Scholar 

  73. Weiler J, Mitchell T, Heath M (2014) Response suppression delays the planning of subsequent stimulus-driven saccades. PLoS ONE 9:e86408

    PubMed  PubMed Central  Google Scholar 

  74. Weiler J, Hassall CD, Krigolson OE, Heath M (2015) The unidirectional prosaccade switch-cost: electroencephalographic evidence of task-set inertia in oculomotor control. Behav Brain Res 278:323–329

    PubMed  Google Scholar 

  75. Winter B, Breitenstein C, Mooren FC, Voelker K, Fobker M, Lechtermann A, Krueger K, Fromme A, Korsukewitz C, Floel A, Knecht S (2007) High impact running improves learning. Neurobiol Learn Mem 87:597–609

    PubMed  Google Scholar 

  76. Wurtz RH, Albano JE (1980) Visual-motor function of the primate superior colliculus. Annu Rev Neurosci 3:189–226

    CAS  PubMed  Google Scholar 

  77. Wylie G, Allport A (2000) Task switching and the measurement of “switch costs”. Psychol Res 63:212–233

    CAS  PubMed  Google Scholar 

  78. Yanagisawa H, Dan I, Tsuzuki D, Kato M, Okamoto M, Kyutoku Y, Soya H (2010) Acute moderate exercise elicits increased dorsolateral prefrontal activation and improves cognitive performance with Stroop test. NeuroImage 50:1702–1710

    PubMed  Google Scholar 

  79. Yeung N, Nystrom LE, Aronson JA, Cohen JD (2006) Between-task competition and cognitive control in task switching. J Neurosci 26:1429–1438

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Supported by a Discovery Grant from the Natural Sciences and Engineering Research Council (NSERC) of Canada, and Faculty Scholar and Major Academic Development Fund Awards from the University of Western Ontario.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Matthew Heath.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Melvyn A. Goodale.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shukla, D., Al-Shamil, Z., Belfry, G. et al. A single bout of moderate intensity exercise improves cognitive flexibility: evidence from task-switching. Exp Brain Res (2020). https://doi.org/10.1007/s00221-020-05885-w

Download citation

Keywords

  • Antisaccade
  • Executive function
  • Exercise
  • Oculomotor