Same or different pitch? Effects of musical expertise, pitch difference, and auditory task on the pitch discrimination ability of musicians and non-musicians

Abstract

Musical expertise promotes both the perception and the processing of music. The aim of the present study was to analyze if musicians compared to non-musicians already have auditory processing advantages at the neural level. 50 musicians and 50 non-musicians worked on a task to determine the individual auditory difference threshold (individual JND threshold). A passive oddball paradigm followed while the EEG activity was recorded. Frequent standard sounds (528 hertz [Hz]) and rare deviant sounds (individual JND threshold, 535 Hz, and 558 Hz) were presented in the oddball paradigm. The mismatch negativity (MMN) and the P3a were used as indicators of auditory discrimination skills for frequency differences. Musicians had significantly smaller individual JND thresholds than non-musicians, but musicians were not faster than non-musicians. Musicians and non-musicians showed both the MMN and the P3a at the 535 Hz and 558 Hz condition. In the individual JND threshold condition, non-musicians, whose individual JND threshold was at 539.8 Hz (and therefore even above the deviant sound of 535 Hz), predictably showed the MMN and the P3a. Musicians, whose individual JND threshold was at 531.1 Hz (and thus close to the standard sound of 528 Hz), showed no MMN and P3a—although they were behaviorally able to differentiate frequencies individually within their JND threshold range. This may indicate a key role of attention in triggering the MMN during the detection of frequency differences in the individual JND threshold range (see Tervaniemi et al. in Exp Brain 161:1–10, 2005).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Notes

  1. 1.

    For the remaining 5–1.5 h, participants have been working on the Goldsmiths Musical Sophistication Index (Müllensiefen et al. 2014), as well as on working memory and intelligence tasks. The results of these tasks are reported elsewhere.

  2. 2.

    For practical reasons, the EEG was derived right at the beginning (there were no hypotheses and analyses on the threshold task).

  3. 3.

    The electrodes Fz and Cz were chosen here as examples of illustration.

  4. 4.

    Note: for simplicity, the mean of each sample is given as the individual JND threshold here, but each participant responded to their personal individual JND threshold.

References

  1. Alho K, Woods DL, Algazi A, Näätänen R (1992) Intermodal selective attention: II. Effects of attentional load on processing of auditory and visual stimuli in central space. Electroencephalogr Neurophysiol 82:356–368

    CAS  Article  Google Scholar 

  2. Altenmüller EO (2002) Musik im Kopf. Gehirn Geist 1:18–25

    Google Scholar 

  3. Azzara C (1991) Audiation, improvisation, and music learning theory. Quarterly 2:106–109

    Google Scholar 

  4. Bianchi F, Hjortkjær J, Santurette S, Zatorre RJ, Siebner HR, Dau T (2017) Subcortical and cortical correlates of pitch discrimination: evidence for two levels of neuroplasticity in musicians. NeuroImage 163:398–412

    PubMed  Article  PubMed Central  Google Scholar 

  5. Bidelman GM, Nelms C, Bhagat SP (2016) Musical experience sharpens human cochlear tuning. Hear Res 335:40–46

    PubMed  Article  PubMed Central  Google Scholar 

  6. Bortz J, Schuster C (2010) Statistik für Human-und Sozialwissenschaftler, 7th edn. Springer Verlag, Heidelberg

    Book  Google Scholar 

  7. Brattico E, Tervaniemi M, Picton TW (2003) Effects of brief discrimination-training on the auditory N1 wave. Neuroreport 14(18):2489–2492

    PubMed  Article  PubMed Central  Google Scholar 

  8. Čeponienė R, Lepistö T, Soininen M, Aronen E, Alku P, Näätänen R (2004) Event-related potentials associated with sound discrimination versus novelty detection in children. Psychophysiology 41:130–141

    PubMed  Article  PubMed Central  Google Scholar 

  9. Demany L, Semal C (2002) Learning to perceive pitch differences. J Acoust Soc Am 111(3):1377–1388

    PubMed  Article  PubMed Central  Google Scholar 

  10. Escera C, Alho K, Winkler I, Näätänen R (1998) Neural mechanisms of involuntary attention to acoustic novelty and change. J Cogn Neurosci 10:590–604

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. Escera C, Alho K, Winkler I, Winkler I (2000) Involuntary attention and distractibility as evaluated with event-related brain potentials. Audiol Neurootol 5:151–166

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. Friedman D, Cycowicz YM, Gaeta H (2001) The novelty P3: an event-related brain potential (ERP) sign of the brain’s evaluation of novelty. Neurosci Biobehav Rev 25(4):355–373

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. Fujioka T, Trainor L, Ross B, Kakigi R, Pantev C (2004) Musical training enhances automatic encoding or melodic contour and interval structure. J Cogn Neurosci 16:1010–1021

    PubMed  Article  PubMed Central  Google Scholar 

  14. Geiser E, Sandmann P, Jäncke L, Meyer M (2010) Refinement of metre perception–training increases hierarchical metre processing. Eur J Neurosci 32:1979–1985

    PubMed  Article  PubMed Central  Google Scholar 

  15. Halberda J, Mazzocco MMM, Feigenson L (2008) Individual differences in non-verbal number acuity correlate with math achievement. Nature 455(2):665–668

    CAS  Article  Google Scholar 

  16. Harvey LO, Parker SP (2014) Detection theory: sensory and decision processes. University of Colorado, Boulder

    Google Scholar 

  17. Houtsma AJ, Durlach NI, Horowitz DM (1987) Comparative learning of pitch and loudness identification. J Acoust Soc Am 81:129–132

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. Jäncke L (2009) Music drives brain plasticity. F1000 Biol Rep 1:78

    PubMed  PubMed Central  Google Scholar 

  19. Kaernbach C (1991) Simple adaptive testing with the weighted up-down method. Percept Psychophys 49:227–229

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. Kishon-Rabin L, Amir O, Vexler Y, Zaltz Y (2001) Pitch discrimination: are professional musicians better than non-musicians? J Basic Clin Physiol Pharmacol 12(2):125–143

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. Koelsch S, Schröger E, Tervaniemi M (1999) Superior attentive and pre-attentive auditory processing in musicians. Neuroreport 10:1309–1313

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. Kraus N, Chandrasekaran B (2010) Music training for the development of auditory skills. Nat Rev Neurosci 11:599–605

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. Lang AH, Nyrke T, Ek M, Aaltonen O, Raimo I, Näätänen R (1990) Pitch discrimination performance and auditive event related potentials. In: Brunia CHM, Gaillard AWK, Kok A (eds) Psychophysiological brain research, vol 1. Tilburg University Press, Tilburg, pp 294–298

    Google Scholar 

  24. Lehmann AC, Gruber H (2006) Music. In: Ericsson KA, Charness N, Feltovich PJ, Hoffman RR (eds) The Cambridge handbook of expertise and expert performance. Cambridge University Press, Cambridge, pp 457–470

    Chapter  Google Scholar 

  25. Levitin DJ (2006) This is your brain on music: the science of a human obsession. Dutton/Penguin Books, New York

    Google Scholar 

  26. Magne C, Schön D, Besson M (2006) Musician children detect pitch violations in both music and language better than nonmusician children: behavioral and electrophysiological approaches. J Cogn Neurosci 18:199–211

    PubMed  Article  PubMed Central  Google Scholar 

  27. Menning H, Roberts LE, Pantev C (2000) Plastic changes in the auditory cortex induced by intensive frequency discrimination training. Neuroreport 11(4):817–822

    CAS  PubMed  Article  Google Scholar 

  28. Micheyl C, Delhommeau K, Perrot X, Oxenham A (2006) Influence of musical and psychoacoustical training on pitch discrimination. Hear Res 219:36–47

    PubMed  Article  Google Scholar 

  29. Müllensiefen D, Gingras B, Stewart L, Musil J (2014) The goldsmiths musical sophistication index (Gold-MSI): technical report and documentation v1.0. Goldsmiths, University of London, London

    Google Scholar 

  30. Münte TF, Altenmüller EO, Jäncke L (2002) The musician’s brain as a model of neuroplasticity. Nat Rev Neurosci 3:473–478

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  31. Münzer S, Berti S, Pechmann T (2002) Encoding timbre, speech, and tones: musicians vs. non-musicians. Psychol Beitr 44:187–202

    Google Scholar 

  32. Müsseler J (2016) Visuelle Wahrnehmung. In: Müsseler J (ed) Allgemeine Psychologie, 2nd edn. Springer Verlag, Berlin

    Google Scholar 

  33. Näätänen R (1995) The mismatch negativity: a powerful tool for cognitive neuroscience. Ear Hear 16:6–18

    PubMed  Article  PubMed Central  Google Scholar 

  34. Näätänen R (2000) Mismatch negativity (MMN): perspectives for application. Int J Psychophysiol 37:3–10

    PubMed  Article  PubMed Central  Google Scholar 

  35. Nager W, Kohlmetz C, Altenmüller E, Rodriguez-Fornells A, Münte TF (2003) The fate of sounds in conductors’ brains: an ERP study. Cogn Brain Res 17:83–93

    Article  Google Scholar 

  36. Nikjeh DA, Lister JJ, Frisch SA (2008) Hearing of note: an electrophysiologic and psychoacoustic comparison of pitch discrimination between vocal and instrumental musicians. Psychophysiology 45:994–1007

    PubMed  Article  PubMed Central  Google Scholar 

  37. Nikjeh DA, Lister JJ, Frisch SA (2009) Preattentive corticol-evoked responses to pure tones, harmonic tones, and speech: influence of music training. Ear Hear 30(4):432–446

    PubMed  Article  PubMed Central  Google Scholar 

  38. Novitsky N, Tervaniemi M, Huotilainen M, Näätänen R (2004) Frequency discrimination at different frequency levels as indexed by electrophysiological and behavioral measures. Cogn Brain Res 20:26–36

    Article  Google Scholar 

  39. Ollen JE (2006) A criterion‐related validity test of selected indicators of musical sophistication using expert ratings [electronic resource]. http://www.ohiolink.edu/etd/view.cgi?osu1161705351. Accessed 01 July 2014

  40. Pallesen KJ, Brattico E, Bailey CJ, Korvenoja A, Koivisto J, Gjedde A, Carlson S (2010) Cognitive control in auditory working memory is enhanced in musicians. PLoS One 5(6):1–12

    Article  CAS  Google Scholar 

  41. Pantev C, Roberts LE, Schulz M, Engelien A, Ross B (2001) Timbre-specific enhancements of auditory cortical representations in musicians. Neuroreport 12:169–174

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. Pantev C, Ross B, Fujioka T, Trainor L, Schulte M, Schulz M (2003) Music and learning-induced cortical plasticity. Ann N Y Acad Sci 999:438–450

    PubMed  Article  PubMed Central  Google Scholar 

  43. Parbery-Clark A, Strait DL, Kraus N (2011) Context-dependent encoding in the auditory brainstem subserves enhanced speech-in-noise perception in musicians. Neuropsychologia 49:3338–3345

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. Polich J (2007) Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol 118(10):2128–2148

    PubMed  PubMed Central  Article  Google Scholar 

  45. Polich J (2012) Neuropsychology of P300. The Oxford handbook of event-related potential components. Oxford University Press, Oxford

    Google Scholar 

  46. Posner MI (1988) Introduction: what is it to be an expert? In: Chi MTH, Glaser R, Farr MJ (eds) The nature of expertise. Erlbaum, Hillsdale, pp 29–36

    Google Scholar 

  47. Putkinen V (2014). Musical activities and the development of neural sound discrimination. Unpublished doctoral dissertation, University of Helsinki

  48. Putkinen V, Tervaniemi M, Huotilainen M (2013) Informal musical activities are linked to auditory discrimination and attention in 2–3-year-old children: an event-related potential study. Eur J Neurosci 37:654–661

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. Sanju HK, Kumar P (2016) Comparison of pre-attentive auditory discrimination at gross and fine difference between auditory stimuli. Int Arch Otorhinolarynol 20(4):305–309

    Google Scholar 

  50. Schröger E, Wolff C (1998) Attentional orienting and reorienting is indicated by human event-related brain potentials. NeuroReport 9:3355–3358

    PubMed  Article  PubMed Central  Google Scholar 

  51. Seppänen M, Hämäläinen J, Pesonen A-K, Tervaniemi M (2012) Music training enhances rapid neural plasticity of N1 and P2 source activation for unattended sounds. Front Hum Neurosci 6:1–13

    Article  Google Scholar 

  52. Spiegel M, Watson C (1984) Performance on frequency discrimination tasks by musicians and non-musicians. J Acoust Soc Am 76:1690–1696

    Article  Google Scholar 

  53. Swets JA, Tanner WD, Birdsall TG (1961) Decision processes in perception. Psychol Rev 68:301–340

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. Tanner D, Morgan-Short K, Luck SJ (2015) How inappropriate high-pass filters can produce artefactual effects and incorrect conclusions in ERP studies of language and cognition. Psychophysiology 52:997–1009

    PubMed  PubMed Central  Article  Google Scholar 

  55. Tervaniemi M, Brattico E (2004) From sounds to music towards understanding the neurocognition of musical sound perception. J Conscious Stud 11:34

    Google Scholar 

  56. Tervaniemi M, Ilvonen T, Sinkkonen J, Kujala A, Alho K, Huotilainen M, Näätänen R (2000) Harmonic partials facilitate pitch discrimination in humans: electrophysiological and behavioral evidence. Neurosci Lett 279 (1):29-32

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  57. Tervaniemi M, Just V, Koelsch S, Widmann A, Schröger E (2005) Pitch discrimination accuracy in musicians vs. nonmusicians: an event-related potential and behavioral study. Exp Brain Res 161:1–10

    PubMed  Article  PubMed Central  Google Scholar 

  58. Tervaniemi M, Castaneda A, Knoll M, Uther M (2006) Sound processing in amateur musicians and nonmusicians: ERP and behavioral indices. NeuroReport 17:1225–1228

    PubMed  Article  PubMed Central  Google Scholar 

  59. Zatorre RJ, Perry DW, Beckett CA, Westbury CF, Evans AC (1998) Functional anatomy of musical processing in listeners with absolute pitch and relative pitch. Proc Natl Acad Sci USA 95:3172–3177

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was funded by the Humboldt-Universität zu Berlin (CA and EvdM) and the Elsa-Neumann-Stipendium des Landes Berlin as a cooperation project with the Katholische Universität Eichstätt-Ingolstadt (KS). We are grateful to the participants for supporting our research. We thank Christina Rügen for her dedicated work with the participants and her elaborate EEG data recordings. We thank Michelle Wyrobnik, Christina Reimer, Annika Dix, Gesa Schaadt, Michelle Au, and Guido Kiecker for all their support. We thank Lindsay Flint for the language editing.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christin Arndt.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Carlo Alberto Marzi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arndt, C., Schlemmer, K. & van der Meer, E. Same or different pitch? Effects of musical expertise, pitch difference, and auditory task on the pitch discrimination ability of musicians and non-musicians. Exp Brain Res 238, 247–258 (2020). https://doi.org/10.1007/s00221-019-05707-8

Download citation

Keywords

  • Pitch discrimination
  • Musical expertise
  • Individual auditory difference threshold
  • Mismatch negativity (MMN)
  • P3a