Advertisement

Experimental Brain Research

, Volume 237, Issue 10, pp 2729–2734 | Cite as

Associations between genetic variations and global motion perception

  • Marina KunchuliaEmail author
  • Nato Kotaria
  • Karin Pilz
  • Adam Kotorashvili
  • Michael H. Herzog
Research Article
  • 75 Downloads

Abstract

The cholinergic system is known to strongly modulate perceptual and cognitive processes, and the alpha7 subunit of the cholinergic nicotinic receptor (CHRNA7) is broadly expressed within the visual system. Here, we assessed whether genetic variations of CHRNA7 affect coherent motion perception. Motion perception has been shown to decline with age, and it has previously been suggested that the effects of genetic variations are magnified by age. Therefore, we tested both older (n = 62) and younger adults (n = 63). We found that motion coherence thresholds were significantly higher for older compared to younger adults, which is in accordance with previous studies. Interestingly, there was a strong relationship between variants of the SNP rs2337980 of the CHRNA7 and motion direction discrimination. In particular, participants carrying the TC genotype had considerably lower motion coherence thresholds than CC carriers. The effect of genotype did not interact with age. Our results show that genetic variations are associated with perceptual performance, but are unlikely to explain age-related changes.

Keywords

Coherent motion Genetic variations Cholinergic system CHRNA7 Aging 

Notes

Acknowledgements

This work was supported by the Velux Foundation and by the National Centre of Competence in Research (NCCR) SYNAPSY of the Swiss National Science Foundation (SNF). Nato Kotaria was supported by Shota Rustaveli National Science Foundation funded Grant for Young Scientist, Project no. 52/53.

References

  1. Allen HA, Hutchinson CV, Ledgeway T, Gayle P (2010) The role of contrast sensitivity in global motion processing deficits in the elderly. J Vis 10(10):15CrossRefPubMedGoogle Scholar
  2. Aztiria E, Gotti C, Domenici L (2004) Alpha7 but not alpha4 AChR subunit expression is regulated by light in developing primary visual cortex. J Comput Neurol 480:378–391CrossRefGoogle Scholar
  3. Bach M (1996) The Freiburg visual acuity test-automatic measurement of visual acuity. Optom Vis Sci 73:49–53CrossRefPubMedGoogle Scholar
  4. Bakanidze G, Roinishvili M, Chkonia E, Kitzrow W, Richter S, Neumann K, Herzog MH, Brand A, Puls I (2013) Association of backward masking with nicotine receptor α7 subunit gene (CHRNA7) polymorphism in Schizophrenia. Front Psychiatry 22(4):133Google Scholar
  5. Ball K, Sekuler R (1986) Improving visual perception in older observers. J Gerontol 41(2):176–182CrossRefPubMedGoogle Scholar
  6. Bennett PJ, Sekuler R, Sekuler AB (2007) The effects of aging on motion detection and direction identification. Vis Res 47(6):799–809CrossRefPubMedGoogle Scholar
  7. Billino J, Pilz KS (2019) Motion perception as a model for perceptual ageing. J Vis 19:4.  https://doi.org/10.1167/19.4.3 CrossRefGoogle Scholar
  8. Billino J, Bremmer F, Gegenfurtner KR (2008) Differential aging of motion processing mechanisms: evidence against general perceptual decline. Vis Res 48(10):1254–1261CrossRefPubMedGoogle Scholar
  9. Billino J, Hamburger K, Gegenfurtner KR (2009) Age effects on the perception of motion illusions. Perception 38(4):508–521CrossRefPubMedGoogle Scholar
  10. Chen Y, Nakayama K, Levy D, Matthysse S, Holzman P (2003) Processing of global, but not local, motion direction is deficient in schizophrenia. Schizophr Res 61(2–3):215–227CrossRefPubMedGoogle Scholar
  11. Creelman CD, Taylor MM (1969) Some pitfalls in adaptive testing: comments on “temporal integration and periodicity pitch”. J Acoust Soc Am 46:1581–1582CrossRefPubMedGoogle Scholar
  12. De Leon J, Diaz FJ (2005) Ameta-analysis of worldwide studies demonstrates an association between schizophrenia and tobacco smoking behaviors. Schizophr Res 76(2–3):135–157CrossRefPubMedGoogle Scholar
  13. Deutsch SI, Urbano MR, Burket JA, Herndon AL, Winebarger EE (2011) Pharmacotherapeutic implications of the association between genomic instability at chromosome 15q13.3 and autism spectrum disorders. Clin Neuropharmacol 34:203–205CrossRefPubMedGoogle Scholar
  14. Disney AA, Aoki C, Hawken MJ (2007) Gain modulation by nicotine in macaque v1. Neuron 56:701–713CrossRefPubMedPubMedCentralGoogle Scholar
  15. Dumas JA, Newhouse PA (2011) The cholinergic hypothesis of cognitive aging revisited again: cholinergic functional compensation. Pharmacol Biochem Behav 99(2):254–261CrossRefPubMedPubMedCentralGoogle Scholar
  16. Efron B, Tibshirani RJ (1994) An introduction to the bootstrap. CRC Press, Boca RatonGoogle Scholar
  17. Fernandez R, Monacelli A, Duffy CJ (2013) Visual motion event related potentials distinguish aging and Alzheimer’s disease. J Alzheimers Dis 36(1):177–183CrossRefPubMedPubMedCentralGoogle Scholar
  18. Galvin VC, Amsten AFT, Wang M (2018). Evolution in neuromodulation—the differential roles of acetylcholine in higher order association vs. primary visual corticesGoogle Scholar
  19. Gotti C, Moretti M, Gaimarri A, Zanardi A, Clementi F, Zoli M (2007) Heterogeneity and complexity of native brain nicotinic receptors. Biochem Pharmacol 74:1102–1111CrossRefPubMedGoogle Scholar
  20. Herzog MH, Brand A (2015) Visual masking and schizophrenia. Schizophr Res Cogn 2:64–71CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hutchinson CV, Arena A, Allen HA, Ledgeway T (2012) Psychophysical correlates of global motion processing in the aging visual system: a critical review. Neurosci Biobehav Rev 36:1266–1272CrossRefPubMedGoogle Scholar
  22. Hutchinson CV, Ledgeway T, Allen HA (2014) The ups and downs of global motion perception: a paradoxical advantage for smaller stimuli in the aging visual system. Front Aging Neurosci.  https://doi.org/10.3389/fnagi.2014.00199.eCollection2014 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kang JI, Huppé-Gourgues F, Vaucher F (2014) Boosting visual cortex function and plasticity with acetylcholine to enhance visual perception. Front Syst Neurosci.  https://doi.org/10.3389/fnsys.2014.00172 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kedmi M, Orr-Urtreger A (2011) The effects of aging vs. α7 nAChR subunit deficiency on the mouse brain transcriptome: aging beats the deficiency. Age (Dordr) 33:1–13CrossRefGoogle Scholar
  25. Koldewyn K, Whitney D, Rivera SM (2010) The psychophysics of visual motion and global form processing in autism. Brain J Neurol 133:599–610CrossRefGoogle Scholar
  26. Kunchulia M, Pilz KS, Herzog MH (2014) Small effect of Nicotine of visual spatiotempotal processing. Sci Rep 4:7316CrossRefPubMedPubMedCentralGoogle Scholar
  27. Leonard S, Mexal S, Freedman R (2007) Smoking, genetics and schizophrenia: evidence for self-medication. J Dual Diagn 3:43–59CrossRefPubMedPubMedCentralGoogle Scholar
  28. Li X, Papenberg G, Kalpouzos G, Bдckman L, Persson J (2017) Influence of the DRD2/ANKK1 Taq1A polymorphism on caudate volume in older adults without dementia. Brain Struct Funct.  https://doi.org/10.1007/s00429-018-1650-0 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Lindenberger U, Nagel IE, Chicherio C, Li SC, Heekeren HR, Bäckman L (2008) Age-related decline in brain resources modulates genetic effects on cognitive functioning. Front Neurosci 2:234–244CrossRefPubMedPubMedCentralGoogle Scholar
  30. Maunsell JH, Nealey TA, DePriest DD (1990) Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey. J Neurosci 10:3323–3334CrossRefPubMedGoogle Scholar
  31. McCool CH, Britten KH (2008) Cortical processing of visual motion. In: Basbaum AI, Kaneko A, Shepherd GM, Westheimer G, Albright TD, Masland RH, Dallos P, Oertel D, Firestein S, Beauchamp GK, Bushnell MC, Kaas JH, Gardner E (eds) The senses: a comprehensive reference. Academic Press, New York, pp 157–187CrossRefGoogle Scholar
  32. Norman JF, Cheeseman JR, Pyles J, Baxter MW, Thomason KE, Calloway AB (2013) The effect of age upon the perception of 3-D shape from motion. Vis Res 18:54–61CrossRefGoogle Scholar
  33. Origlia N, Valenzano DR, Moretti M, Gotti C, Domenici L (2012) Visual acuity is reduced in alpha 7 nicotinic receptor knockout mice. Invest Ophthalmol Vis Sci 53:1211–1218CrossRefPubMedGoogle Scholar
  34. Papenberg G, Lindenberger U, Bäckman L (2015a) Aging-related magnification of genetic effects on cognitive and brain integrity. Trends Cogn Sci 19:506–514CrossRefPubMedGoogle Scholar
  35. Papenberg G, Salami A, Persson J, Lindenberger U, Bäckman L (2015b) Genetics and functional imaging: effects of APOE, BDNF, COMT, and KIBRA in aging. Neuropsychol Rev 25:47–62CrossRefPubMedGoogle Scholar
  36. Parri HR, Hernandez CM, Dineley KT (2011) Research update: Alpha7 nicotinic acetylcholine receptor mechanisms in Alzheimer’s disease. Biochem Pharmacol 82(8):931–942CrossRefPubMedGoogle Scholar
  37. Pilz KS, Kunchulia M, Parkosadze K, Herzog MH (2015) Ageing and visual spatiotemporal processing. Exp Brain Res 233(8):2441–2448CrossRefPubMedGoogle Scholar
  38. Pilz KS, Miller L, Agnew HC (2017) Motion coherence and direction discrimination in healthy aging. J Vis 1:31.  https://doi.org/10.1167/17.1.31 CrossRefGoogle Scholar
  39. Ricciardi E, Pietrini P, Schapiro MB, Rapoport SI, Furey M (2009) Cholinergic modulation of visual working memory during aging: a parametric PET study. Brain Res Bull 79(5):322–332CrossRefPubMedPubMedCentralGoogle Scholar
  40. Rigbi A, Kanyas K, Yakir A, Greenbaum L, Pollak Y, Ben-Asher E, Lancet D, Kertzman S, Lerer B (2008) Why do young women smoke? V. Role of direct and interactive effects of nicotinic cholinergic receptor gene variation on neurocognitive function. Genes Brain Behav 7(2):164–172CrossRefPubMedGoogle Scholar
  41. Rigbi A, Yakir A, Sarner-Kanyas K, Pollak Y, Lerer B (2011) Why do young women smoke? VI. A controlled study of nicotine effects on attention: pharmacogenetic interactions. Pharmacogenom J 11(1):45–52CrossRefGoogle Scholar
  42. Robertson CE, Thomas C, Kravitz DJ, Wallace GL, Baron-Cohen S, Martin A, Baker CI (2014) Global motion perception deficits in autism are reflected as early as primary visual cortex. Brain 137(Pt 9):2588–2599CrossRefPubMedPubMedCentralGoogle Scholar
  43. Rodriguez S, Gaunt T, Day I (2009) Hardy–Weinberg equilibrium testing of biological ascertainment for mendelian randomization studies. Am J Epidemiol 169:505–514CrossRefPubMedPubMedCentralGoogle Scholar
  44. Rokem A, Silver MA (2010) Cholinergic enhancement augments magnitude and specificity of visual perceptual learning in healthy humans. Curr Biol 20:1723–1728.  https://doi.org/10.1016/j.cub.2010.08.027 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Severance EG, Yolken RH (2008) Novel alpha7 nicotinic receptor isoforms and deficient cholinergic transcription in schizophrenia. Genes Brain Behav 7(1):37–45PubMedGoogle Scholar
  46. Shain LM, Norman JF (2018) Aging and the visual perception of motion direction: solving the aperture problem. Perception 47(7):735–750CrossRefPubMedGoogle Scholar
  47. Shaqiri A, Clarke A, Kunchulia M, Herzig D, Pilz KS, Herzog MH (2015) The effects of aging on perception and cognition. J Vis 15(12):802.  https://doi.org/10.1167/15.12.802 CrossRefGoogle Scholar
  48. Snowden R, Kavanagh E (2006) Motion perception in the ageing visual system: minimum motion, motion coherence, and speed discrimination thresholds. Perception 35(1):9–24CrossRefPubMedGoogle Scholar
  49. Spencer JM, Sekuler AB, Bennett PJ, Christensen BK (2013) Contribution of coherent motion to the perception of biological motion among persons with Schizophrenia. Front Psychol 4:507.  https://doi.org/10.3389/fpsyg.2013.00507 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Tran DB, Silverman SE, Zimmerman K, Feldon SE (1998) Age-related deterioration of motion perception and detection. Graefe’s Arch Clin Exp Ophthalmol 236(4):269–273CrossRefGoogle Scholar
  51. Trick GL, Silverman SE (1991) Visual sensitivity to motion: age-related changes and deficits in senile dementia of the Alzheimer type. Neurology 41(9):1437–1440CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Cognitive NeurosciencesFree University of TbilisiTbilisiGeorgia
  2. 2.Laboratory of Vision PhysiologyIvane Beritashvili Center of Experimental BiomedicineTbilisiGeorgia
  3. 3.Genome CenterNational Center for Disease Control and Public HealthTbilisiGeorgia
  4. 4.Department of Experimental PsychologyUniversity of GroningenGroningenThe Netherlands
  5. 5.Laboratory of Psychophysics, Brain Mind InstituteEcole Polytechnique Federale de Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations