Bartley SH (1938) Subjective brightness in relation to flash rate and the light–dark ratio. J Exp Psychol 23(3):313–319
Article
Google Scholar
Bertrand JK, Wispinski NJ, Mathewson KE, Chapman CS (2018) Entrainment of theta, not alpha, oscillations is predictive of the brightness enhancement of a flickering stimulus. Sci Rep 8(1):6152
Article
Google Scholar
Brainard DH (1997) The psychophysics toolbox. Spat Vis 10:433–436
CAS
Article
Google Scholar
Burgess AP, Gruzelier JH (1997) Short duration synchronization of human theta rhythm during recognition memory. Neuroreport 8(4):1039–1042
CAS
Article
Google Scholar
Busch NA, VanRullen R (2010) Spontaneous EEG oscillations reveal periodic sampling of visual attention. Proc Natl Acad Sci USA 107(37):16048–16053
CAS
Article
Google Scholar
Busch NA, Dubois J, VanRullen R (2009) The phase of ongoing EEG oscillations predicts visual perception. J Neurosci 29(24):7869–7876
CAS
Article
Google Scholar
Buschman TJ, Kastner S (2015) From behavior to neural dynamics: an integrated theory of attention. Neuron 88(1):127–144
CAS
Article
Google Scholar
Buzsaki G (2006) Rhythms of the brain. Oxford University Press, Oxford
Book
Google Scholar
Buzsáki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304(5679):1926–1929
Article
Google Scholar
Calderone DJ, Lakatos P, Butler PD, Castellanos FX (2014) Entrainment of neural oscillations as a modifiable substrate of attention. Trends Cogn Sci 18(6):300–309
Article
Google Scholar
Cramer AOJ, van Ravenzwaaij D, Matzke D, Steingroever H, Wetzels R, Grasman RPPP, Waldrop LJ, Wagenmakers EJ (2016) Hidden multiplicity in exploratory multiway ANOVA: prevalence and remedies. Psychon Bull Rev 23(2):640–647
Article
Google Scholar
Cravo AM, Rohenkohl G, Wyart V, Nobre AC (2013) Temporal expectation enhances contrast sensitivity by phase entrainment of low-frequency oscillations in visual cortex. J Neurosci 33(9):4002–4010
CAS
Article
Google Scholar
Crouzet SM, VanRullen R (2017) The rhythm of attentional stimulus selection during visual competition. bioRxiv. https://doi.org/10.1101/105239
Article
Google Scholar
Dugué L, Marque P, VanRullen R (2015) Theta oscillations modulate attentional search performance periodically. J Cogn Neurosci 27(5):945–958
Article
Google Scholar
Fiebelkorn IC, Kastner S (2018) A rhythmic theory of attention. Trends Cogn Sci 23(2):87–101
Article
Google Scholar
Fiebelkorn IC, Saalmann YB, Kastner S (2013) Rhythmic sampling within and between objects despite sustained attention at a cued location. Curr Biol 23(24):2553–2558
CAS
Article
Google Scholar
Glad A, Magnussen S (1972) Darkness enhancement in intermittent light: an experimental demonstration. Vis Res 12(1):111–115
CAS
Article
Google Scholar
Gulbinaite R, van Viegen T, Wieling M, Cohen MX, VanRullen R (2017) Individual alpha peak frequency predicts 10 Hz flicker effects on selective attention. J Neurosci 37(42):10173–10184
CAS
Article
Google Scholar
Han B, VanRullen R (2016) Shape perception enhances perceived contrast: evidence for excitatory predictive feedback? Sci Rep. https://doi.org/10.1038/srep22944
Article
PubMed
PubMed Central
Google Scholar
Han B, VanRullen R (2017) The rhythms of predictive coding? Pre-stimulus phase modulates the influence of shape perception on luminance judgments. Sci Rep. https://doi.org/10.1038/srep43573
Article
PubMed
PubMed Central
Google Scholar
Harris AM, Dux PE, Jones CN, Mattingley JB (2017) Distinct roles of theta and alpha oscillations in the involuntary capture of goal-directed attention. Neuroimage 152:171–183
Article
Google Scholar
Harris AM, Dux PE, Mattingley JB (2018) Detecting unattended stimuli depends on the phase of prestimulus neural oscillations. J Neurosci 38(12):3092–3101
CAS
Article
Google Scholar
Hogendoorn H (2016) Voluntary saccadic eye movements ride the attentional rhythm. J Cogn Neurosci 28(10):1625–1635
Article
Google Scholar
Holcombe AO, Chen WY (2013) Splitting attention reduces temporal resolution from 7 Hz for tracking one object to < 3 Hz when tracking three. J Vis 13:1–19
Article
Google Scholar
Hutcheon B, Yarom Y (2000) Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends Neurosci 23(5):216–222
CAS
Article
Google Scholar
Jensen O, Mazaheri A (2010) Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Front Hum Neurosci. https://doi.org/10.3389/fnhum.2010.00186
Article
PubMed
PubMed Central
Google Scholar
Kim YJ, Grabowecky M, Paller K, Suzuki S (2011) Differential roles of frequency-following and frequency-doubling visual responses revealed by evoked neural harmonics. J Cogn Neurosci 23(8):1875–1886
Article
Google Scholar
Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Rev 29(2–3):169–195
CAS
Article
Google Scholar
Klimesch W, Doppelmayr M, Russegger H, Pachinger T (1996) Theta band power in the human scalp EEG and the encoding of new information. Neuroreport 7:1235–1240
CAS
Article
Google Scholar
Klimesch W, Doppelmayr M, Schimke H, Ripper B (1997) Theta synchronization and alpha desynchronization in a memory task. Psychophysiology 34(2):169–176
CAS
Article
Google Scholar
Klimesch W, Doppelmayr M, Russegger H, Pachinger T, Schwaiger J (1998) Induced alpha band power changes in the human EEG and attention. Neurosci Lett 244(2):73–76
CAS
Article
Google Scholar
Klimesch W, Sauseng P, Hanslmayr S (2007) EEG alpha oscillations: the inhibition–timing hypothesis. Brain Res Rev 53(1):63–88
Article
Google Scholar
Kohn H, Salisbury I (1967) Electroencephalographic indications of brightness enhancement. Vis Res 7(5–6):461–468
CAS
Article
Google Scholar
Lakatos P, Karmos G, Mehta AD, Ulbert I, Schroeder CE (2008) Entrainment of neuronal oscillations as a mechanism of attentional selection. Science 320(5872):110–113
CAS
Article
Google Scholar
Landau AN, Fries P (2012) Attention samples stimuli rhythmically. Curr Biol 22(11):1000–1004
CAS
Article
Google Scholar
Lopes da Silva F (1992) The rhythmic slow activity (theta) of the limbic cortex: an oscillation in search of a function. In: Baar E et al (eds) Induced rhythms in the brain. Springer Science, New York, pp 83–102
Chapter
Google Scholar
Macdonald JS, Cavanagh P, VanRullen R (2014) Attentional sampling of multiple wagon wheels. Atten Percept Psychophys 76(1):64–72
Article
Google Scholar
Magnussen S, Glad A (1975) Brightness and darkness enhancement during flicker: perceptual correlates of neuronal B-and D-systems in human vision. Exp Brain Res 22(4):399–413
Article
Google Scholar
Mathewson KE, Gratton G, Fabiani M, Beck DM, Ro T (2009) To see or not to see: prestimulus α phase predicts visual awareness. J Neurosci 29(9):2725–2732
CAS
Article
Google Scholar
Mathewson KE, Prudhomme C, Fabiani M, Beck DM, Lleras A, Gratton G (2012) Making waves in the stream of consciousness: entraining oscillations in EEG alpha and fluctuations in visual awareness with rhythmic visual stimulation. J Cogn Neurosci 24(12):2321–2333
Article
Google Scholar
Nelson TM, Bartley SH, Jewell RM (1963) Effects upon brightness produced by varying the length of the null interval separating successive “single” pulses: sensory implications of the alternation of response theory, I. J Psychol 56(1):99–106
Article
Google Scholar
Palva S, Palva JM (2011) Functional roles of alpha-band phase synchronization in local and large-scale cortical networks. Front Psychol. https://doi.org/10.3389/fpsyg.2011.00204
Article
PubMed
PubMed Central
Google Scholar
Rager G, Singer W (1998) The response of cat visual cortex to flicker stimuli of variable frequency. Eur J Neurosci 10:1856–1877
CAS
Article
Google Scholar
Sokoliuk R, VanRullen R (2013) The flickering wheel illusion: when α rhythms make a static wheel flicker. J Neurosci 33(33):13498–13504
CAS
Article
Google Scholar
Spaak E, de Lange FP, Jensen O (2014) Local entrainment of alpha oscillations by visual stimuli causes cyclic modulation of perception. J Neurosci 34(10):3536–3544
CAS
Article
Google Scholar
VanRullen R (2016) Perceptual cycles. Trends Cogn Sci 20(10):723–735
Article
Google Scholar
VanRullen R, Koch C (2003) Is perception discrete or continuous? Trends Cogn Sci 7(5):207–213
Article
Google Scholar
Wang XJ (2010) Neurophysiological and computational principles of cortical rhythms in cognition. Physiol Rev 90(3):1195–1268
Article
Google Scholar
Wang D, Clouter A, Chen Q, Shapiro KL, Hanslmayr S (2018) Single-trial phase entrainment of theta oscillations in sensory regions predicts human associative memory performance. J Neurosci. https://doi.org/10.1523/jneurosci.0349-18.2018
Article
PubMed
PubMed Central
Google Scholar
Wispinski NJ, Gallivan JP, Chapman CS (2018) Model, movements, and minds: bridging the gap between decision making and action. Ann N Y Acad Sci. https://doi.org/10.1111/nyas.13973
Article
PubMed
Google Scholar
Wutz A, Muschter E, van Koningsbruggen MG, Weisz N, Melcher D (2016) Temporal integration windows in neural processing and perception aligned to saccadic eye movements. Curr Biol 26(13):1659–1668
CAS
Article
Google Scholar
Wyart V, De Gardelle V, Scholl J, Summerfield C (2012) Rhythmic fluctuations in evidence accumulation during decision making in the human brain. Neuron 76(4):847–858
CAS
Article
Google Scholar