Skip to main content

Utricular function in vestibular neuritis: a pilot study of concordance/discordance between ocular vestibular evoked myogenic potentials and ocular cycloposition

Abstract

Vestibular neuritis (VN) can affect utricular afferents. Utricular function can be assessed by ocular vestibular evoked myogenic potentials (oVEMPs) whose abnormalities include weak or absent responses, and ocular cycloposition whose abnormalities include ocular torsion (OT). When studied independently in vestibular neuritis, oVEMPs are abnormal in 61–82% of cases, and OT is present in 72–80% of cases. The similar range of abnormalities suggests the hypothesis that these tests should be concordantly abnormal. We tested this hypothesis by identifying consecutive adult cases of VN in whom both oVEMPs and OT were performed. OT and oVEMP overlapped (both were abnormal) in only 47% of cases. In 40% of cases oVEMPs alone were abnormal, and in 13% of cases, OT alone was present. These results suggest that oVEMPs and OT assess different aspects of utricular function believed to arise from discrete zones of the utricular macula; the former are thought to reflect the activity of extra-striolar afferents (which detect constant acceleration), and the latter reflects the activity of striolar afferents (which detect change in acceleration).

This is a preview of subscription content, access via your institution.

References

  1. Angelaki DE, Newlands SD, Dickman JD (2002) Inactivation of semicircular canals causes adaptive increases in otolith-driven tilt responses. J Neurophysiol 87:1635–1640. https://doi.org/10.1152/jn.00775.2001

    Article  PubMed  Google Scholar 

  2. Baloh RW, Ishyama A, Wackym PA, Honrubia V (1996) Vestibular neuritis: clinical-pathologic correlation. Otolaryngol Head Neck Surg 114:586–592. https://doi.org/10.1016/S0194-59989670251-6

    Article  CAS  PubMed  Google Scholar 

  3. Bergström B (1973) Morphological studies of the vestibular nerve. In: Otolaryngology. University of Uppsala, Uppsala, p 39

  4. Bohmer A (1999) The subjective visual vertical as a clinical parameter for acute and chronic vestibular (otolith) disorders. Acta Otolaryngol 119:126–127

    Article  CAS  PubMed  Google Scholar 

  5. Brandt U (1962) Reorientation and vestibular function. A comparison in the human centrifuge between fighter pilots and non-aviators. Acta Otolaryngol 54:543–552

    Article  CAS  PubMed  Google Scholar 

  6. Brandt T, Dieterich M (1993) Skew deviation with ocular torsion: a vestibular brainstem sign of topographic diagnostic value. Ann Neurol 33:528–534. https://doi.org/10.1002/ana.410330518

    Article  CAS  PubMed  Google Scholar 

  7. Brandt T, Dieterich M (1994) Vestibular syndromes in the roll plane: topographic diagnosis from brainstem to cortex. Ann Neurol 36:337–347. https://doi.org/10.1002/ana.410360304

    Article  CAS  PubMed  Google Scholar 

  8. Choi KD, Oh SY, Kim HJ, Koo JW, Cho BM, Kim JS (2007) Recovery of vestibular imbalances after vestibular neuritis. Laryngoscope 117:1307–1312. https://doi.org/10.1097/MLG.0b013e31805c08ac

    Article  PubMed  Google Scholar 

  9. Choi SY, Lee SH, Kim HJ, Kim JS (2014) Impaired modulation of the otolithic function in acute unilateral cerebellar infarction. Cerebellum 13:362–371. https://doi.org/10.1007/s12311-013-0544-1

    Article  PubMed  Google Scholar 

  10. Choi JW, Kang SI, Rhee JH, Choi BY, Kim JS, Koo JW (2015) Clinical implication of ocular torsion in peripheral vestibulopathy. Eur Arch Otorhinolaryngol 272:1613–1617. https://doi.org/10.1007/s00405-014-2952-3

    Article  PubMed  Google Scholar 

  11. Clarke AH, Schonfeld U, Helling K (2003) Unilateral examination of utricle and saccule function. J Vestib Res 13:215–225 (PMID: 15096665)

    CAS  PubMed  Google Scholar 

  12. Curthoys IS (2000) Vestibular compensation and substitution. Curr Opin Neurol 13:27–30

    Article  CAS  PubMed  Google Scholar 

  13. Curthoys IS (2010) A critical review of the neurophysiological evidence underlying clinical vestibular testing using sound, vibration and galvanic stimuli. Clin Neurophysiol 121:132–144. https://doi.org/10.1016/j.clinph.2009.09.027

    Article  PubMed  Google Scholar 

  14. Curthoys IS, Iwasaki S, Chihara Y, Ushio M, McGarvie LA, Burgess AM (2011) The ocular vestibular-evoked myogenic potential to air-conducted sound; probable superior vestibular nerve origin. Clin Neurophysiol 122:611–616. https://doi.org/10.1016/j.clinph.2010.07.018

    Article  PubMed  Google Scholar 

  15. Curthoys IS, Vulovic V, Burgess AM et al (2014) Neural basis of new clinical vestibular tests: otolithic neural responses to sound and vibration. Clin Exp Pharmacol Physiol 41:371–380. https://doi.org/10.1111/1440-1681.12222

    Article  CAS  PubMed  Google Scholar 

  16. Curthoys IS (2017) The new vestibular stimuli: sound and vibration-anatomical, physiological and clinical evidence. Exp Brain Res 235:957–972. https://doi.org/10.1007/s00221-017-4874-y

    Article  PubMed  Google Scholar 

  17. Curthoys IS, MacDougall HG, Vidal PP, de Waele C (2017) Sustained and transient vestibular systems: a physiological basis for interpreting vestibular function. Front Neurol 8:117. https://doi.org/10.3389/fneur.2017.00117

    Article  PubMed  PubMed Central  Google Scholar 

  18. Curthoys IS, Grant JW, Burgess AM, Pastras CJ, Brown DJ, Manzari L (2018) Otolithic receptor mechanisms for vestibular-evoked myogenic potentials: a review. Front Neurol 9:15. https://doi.org/10.3389/fneur.2018.00366

    Article  Google Scholar 

  19. Curthoys IS, Halmagyi GM (1995) Vestibular compensation: a review of the oculomotor, neural, and clinical consequences of unilateral vestibular loss. J Vestib Res 5:67–107

    Article  CAS  PubMed  Google Scholar 

  20. de Burlet H (1924) Zur Innervation der Macula sacculi bei Säugetieren. Anatomischer Anzeiger 58:26–32

    Google Scholar 

  21. Fernandez C, Goldberg JM, Abend WK (1972) Response to static tilts of peripheral neurons innervating otolith organs of the squirrel monkey. J Neurophysiol 35:978–987. https://doi.org/10.1152/jn.1972.35.6.978

    Article  CAS  PubMed  Google Scholar 

  22. Fernandez C, Goldberg JM (1976a) Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. I. Response to static tilts and to long-duration centrifugal force. J Neurophysiol 39:970–984. https://doi.org/10.1152/jn.1976.39.5.970

    Article  CAS  PubMed  Google Scholar 

  23. Fernandez C, Goldberg JM (1976b) Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. III. Response dynamics. J Neurophysiol 39:996–1008. https://doi.org/10.1152/jn.1976.39.5.996

    Article  CAS  PubMed  Google Scholar 

  24. Fetter M, Zee DS (1988) Recovery from unilateral labyrinthectomy in rhesus monkey. J Neurophysiol 59:370–393. https://doi.org/10.1152/jn.1988.59.2.370

    Article  CAS  PubMed  Google Scholar 

  25. Fife TD, Colebatch JG, Kerber KA et al (2017) Practice guideline: Cervical and ocular vestibular evoked myogenic potential testing: report of the guideline development, dissemination, and implementation Subcommittee of the American Academy of Neurology. Neurology 89:2288–2296. https://doi.org/10.1212/WNL.0000000000004690

    Article  PubMed  PubMed Central  Google Scholar 

  26. Friedmann I, House W (1980) Vestibular neuronitis. Electron microscopy of Scarpa's ganglion. J Laryngol Otol 94:877–883

    Article  CAS  PubMed  Google Scholar 

  27. Fundakowski CE, Anderson J, Angeli S (2012) Cross-sectional vestibular nerve analysis in vestibular neuritis. Ann Otol Rhinol Laryngol 121:466–470. https://doi.org/10.1177/000348941212100707

    Article  PubMed  Google Scholar 

  28. Gacek RR (1999) The pathology of facial and vestibular neuronitis. Am J Otolaryngol 20:202–210

    Article  CAS  PubMed  Google Scholar 

  29. Gacek RR, Gacek MR (2002) The three faces of vestibular ganglionitis. Ann Otol Rhinol Laryngol 111:103–114. https://doi.org/10.1177/000348940211100201

    Article  PubMed  Google Scholar 

  30. Gacek RR, Rasmussen GL (1961) Fiber analysis of the statoacoustic nerve of guinea pig, cat, and monkey. Anat Rec 139:455–463

    Article  CAS  PubMed  Google Scholar 

  31. Galiana HL, Flohr H, Jones GM (1984) A reevaluation of intervestibular nuclear coupling: its role in vestibular compensation. J Neurophysiol 51:242–259. https://doi.org/10.1152/jn.1984.51.2.242

    Article  CAS  PubMed  Google Scholar 

  32. Goldberg JM, Desmadryl G, Baird RA, Fernandez C (1990) The vestibular nerve of the chinchilla. IV. Discharge properties of utricular afferents. J Neurophysiol 63:781–790. https://doi.org/10.1152/jn.1990.63.4.781

    Article  CAS  PubMed  Google Scholar 

  33. Goto F, Ban Y, Tsutumi T (2011) Acute audiovestibular deficit with complete ocular tilt reaction and absent VEMPs. Eur Arch Otorhinolaryngol 268:1093–1096. https://doi.org/10.1007/s00405-011-1574-2

    Article  PubMed  Google Scholar 

  34. Grant W, Curthoys I (2017) Otoliths—accelerometer and seismometer; implications in vestibular evoked myogenic potential (VEMP). Hear Res 353:26–35. https://doi.org/10.1016/j.heares.2017.07.012

    Article  PubMed  Google Scholar 

  35. Gresty MA, Bronstein AM, Brandt T, Dieterich M (1992) Neurology of otolith function. Peripheral and central disorders. Brain 115(Pt 3):647–673

    Article  PubMed  Google Scholar 

  36. Halmagyi GM, Gresty MA, Gibson WP (1979) Ocular tilt reaction with peripheral vestibular lesion. Ann Neurol 6:80–83. https://doi.org/10.1002/ana.410060122

    Article  CAS  PubMed  Google Scholar 

  37. Halmagyi GM, Curthoys IS, Brandt T, Dieterich M (1991) Ocular tilt reaction: clinical sign of vestibular lesion. Acta Otolaryngol Suppl 481:47–50

    Article  CAS  PubMed  Google Scholar 

  38. Hasuike K, Sekitani T, Imate Y (1995) Enhanced MRI in patients with vestibular neuronitis. Acta Otolaryngol Suppl 519:272–274

    Article  CAS  PubMed  Google Scholar 

  39. Hotson JR, Baloh RW (1998) Acute vestibular syndrome. N Engl J Med 339:680–685. https://doi.org/10.1056/NEJM199809033391007

    Article  CAS  PubMed  Google Scholar 

  40. Huwe JA, Logan GJ, Williams B, Rowe MH, Peterson EH (2015) Utricular afferents: morphology of peripheral terminals. J Neurophysiol 113:2420–2433. https://doi.org/10.1152/jn.00481.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Karlberg M, Annertz M, Magnusson M (2004) Acute vestibular neuritis visualized by 3-T magnetic resonance imaging with high-dose gadolinium. Arch Otolaryngol Head Neck Surg 130:229–232. https://doi.org/10.1001/archotol.130.2.229

    Article  PubMed  Google Scholar 

  42. Kattah JC, Talkad AV, Wang DZ, Hsieh YH, Newman-Toker DE (2009) HINTS to diagnose stroke in the acute vestibular syndrome: three-step bedside oculomotor examination more sensitive than early MRI diffusion-weighted imaging. Stroke 40:3504–3510. https://doi.org/10.1161/STROKEAHA.109.551234

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kheradmand A, Winnick A (2017) Perception of upright: multisensory convergence and the role of temporo-parietal cortex. Front Neurol 8:552. https://doi.org/10.3389/fneur.2017.00552

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kim HA, Hong JH, Lee H et al (2008) Otolith dysfunction in vestibular neuritis: recovery pattern and a predictor of symptom recovery. Neurology 70:449–453. https://doi.org/10.1212/01.wnl.0000297554.21221.a0

    Article  PubMed  Google Scholar 

  45. Kim SH, Kim JS (2018) Effects of head position on perception of gravity in vestibular neuritis and lateral medullary infarction. Front Neurol 9:60. https://doi.org/10.3389/fneur.2018.00060

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lee WS, Suarez C, Honrubia V, Gomez J (1990) Morphological aspects of the human vestibular nerve. Laryngoscope 100:756–764. https://doi.org/10.1288/00005537-199007000-00012

    CAS  Article  PubMed  Google Scholar 

  47. Leigh RJ, Zee DS (2015) The neurology of eye movements. Oxford University Press, Oxford, New York

    Book  Google Scholar 

  48. Magliulo G, Gagliardi S, Ciniglio Appiani M, Iannella G, Re M (2014) Vestibular neurolabyrinthitis: a follow-up study with cervical and ocular vestibular evoked myogenic potentials and the video head impulse test. Ann Otol Rhinol Laryngol 123:162–173. https://doi.org/10.1177/0003489414522974

    Article  PubMed  Google Scholar 

  49. Manzari L, Tedesco A, Burgess AM, Curthoys IS (2010) Ocular vestibular-evoked myogenic potentials to bone-conducted vibration in superior vestibular neuritis show utricular function. Otolaryngol Head Neck Surg 143:274–280. https://doi.org/10.1016/j.otohns.2010.03.020

    Article  PubMed  Google Scholar 

  50. Mardirossian V, Karmali F, Merfeld D (2014) Thresholds for human perception of roll tilt motion: patterns of variability based on visual, vestibular, and mixed cues. Otol Neurotol 35:857–860. https://doi.org/10.1097/MAO.0000000000000346

    Article  PubMed  PubMed Central  Google Scholar 

  51. Morgenstein KM, Seung HI (1971) Vestibular neuronitis. Laryngoscope 81:131–139. https://doi.org/10.1288/00005537-197101000-00012

    Article  CAS  PubMed  Google Scholar 

  52. Ogawa Y, Otsuka K, Shimizu S, Inagaki T, Kondo T, Suzuki M (2012) Subjective visual vertical perception in patients with vestibular neuritis and sudden sensorineural hearing loss. J Vestib Res 22:205–211. https://doi.org/10.3233/VES-2012-0447

    Article  PubMed  Google Scholar 

  53. Poljac E, Lankheet MJ, van den Berg AV (2005) Perceptual compensation for eye torsion. Vis Res 45:485–496. https://doi.org/10.1016/j.visres.2004.09.009

    Article  CAS  PubMed  Google Scholar 

  54. Richard C, Linthicum FH Jr (2012) Vestibular neuritis: the vertigo disappears, the histological traces remain. Otol Neurotol 33:e59–60. https://doi.org/10.1097/MAO.0b013e31824b7730

    Article  PubMed  PubMed Central  Google Scholar 

  55. Si X, Zakir MM, Dickman JD (2003) Afferent innervation of the utricular macula in pigeons. J Neurophysiol 89:1660–1677. https://doi.org/10.1152/jn.00690.2002

    Article  PubMed  Google Scholar 

  56. Stewart CM, Mustari MJ, Perachio AA (2005) Visual-vestibular interactions during vestibular compensation: role of the pretectal not in horizontal VOR recovery after hemilabyrinthectomy in rhesus monkey. J Neurophysiol 94:2653–2666. https://doi.org/10.1152/jn.00739.2004

    Article  PubMed  Google Scholar 

  57. Strupp M, Jager L, Muller-Lisse U, Arbusow V, Reiser M, Brandt T (1998) High resolution Gd-DTPA MR imaging of the inner ear in 60 patients with idiopathic vestibular neuritis: no evidence for contrast enhancement of the labyrinth or vestibular nerve. J Vestib Res 8:427–433

    Article  CAS  PubMed  Google Scholar 

  58. Takai Y, Murofushi T, Ushio M, Iwasaki S (2006) Recovery of subjective visual horizontal after unilateral vestibular deafferentation by intratympanic instillation of gentamicin. J Vestib Res 16:69–73

    PubMed  Google Scholar 

  59. Taylor RL, McGarvie LA, Reid N, Young AS, Halmagyi GM, Welgampola MS (2016) Vestibular neuritis affects both superior and inferior vestibular nerves. Neurology 87:1704–1712. https://doi.org/10.1212/WNL.0000000000003223

    Article  PubMed  Google Scholar 

  60. Tribukait A, Bergenius J, Brantberg K (1998) Subjective visual horizontal during follow-up after unilateral vestibular deafferentation with gentamicin. Acta Otolaryngol 118:479–487

    Article  CAS  PubMed  Google Scholar 

  61. Vibert D, Hausler R, Safran AB, Koerner F (1996) Diplopia from skew deviation in unilateral peripheral vestibular lesions. Acta Otolaryngol 116:170–176

    Article  CAS  PubMed  Google Scholar 

  62. Vibert D, Hausler R, Safran AB (1999) Subjective visual vertical in peripheral unilateral vestibular diseases. J Vestib Res 9:145–152

    CAS  PubMed  Google Scholar 

  63. Voit M (1907) Zur Frage der Verästelung des Nervus Acusticus bei den Sängetieren. Anatomischer Anzeiger 31:635–640

    Google Scholar 

  64. von Baumgarten RJ, Thumler R (1979) A model for vestibular function in altered gravitational states. Life Sci Space Res 17:161–170

    Article  Google Scholar 

  65. Ward BK, Otero-Millan J, Jareonsettasin P, Schubert MC, Roberts DC, Zee DS (2017) Magnetic vestibular stimulation (MVS) as a technique for understanding the normal and diseased labyrinth. Front Neurol 8:122. https://doi.org/10.3389/fneur.2017.00122

    Article  PubMed  PubMed Central  Google Scholar 

  66. Weber KP, Rosengren SM (2015) Clinical utility of ocular vestibular-evoked myogenic potentials (oVEMPs). Curr Neurol Neurosci Rep 15:22. https://doi.org/10.1007/s11910-015-0548-y

    Article  PubMed  Google Scholar 

  67. Yakushin SB, Reisine H, Buttner-Ennever J, Raphan T, Cohen B (2000) Functions of the nucleus of the optic tract (NOT). I. Adaptation of the gain of the horizontal vestibulo-ocular reflex. Exp Brain Res 131:416–432. https://doi.org/10.1007/s002219900303

    Article  CAS  PubMed  Google Scholar 

  68. Yoshino M, Kin T, Ito A et al (2015) Diffusion tensor tractography of normal facial and vestibulocochlear nerves. Int J Comput Assist Radiol Surg 10:383–392. https://doi.org/10.1007/s11548-014-1129-2

    Article  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marcello Cherchi.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cherchi, M. Utricular function in vestibular neuritis: a pilot study of concordance/discordance between ocular vestibular evoked myogenic potentials and ocular cycloposition. Exp Brain Res 237, 1531–1538 (2019). https://doi.org/10.1007/s00221-019-05529-8

Download citation

Keywords

  • Utricle
  • Vestibular neuritis
  • Vestibular function
  • Evoked potential
  • Ocular torsion