Experimental Brain Research

, Volume 237, Issue 3, pp 723–733 | Cite as

Playing Super Mario increases oculomotor inhibition and frontal eye field grey matter in older adults

  • Moussa Diarra
  • Benjamin Rich Zendel
  • Jessica Benady-Chorney
  • Caroll-Ann Blanchette
  • Franco Lepore
  • Isabelle Peretz
  • Sylvie Belleville
  • Greg L. WestEmail author
Research Article


Aging is associated with cognitive decline and decreased capacity to inhibit distracting information. Video game training holds promise to increase inhibitory mechanisms in older adults. In the current study, we tested the impact of 3D-platform video game training on performance in an antisaccade task and on related changes in grey matter within the frontal eye fields (FEFs) of older adults. An experimental group (VID group) engaged in 3D-platform video game training over a period of 6 months, while an active control group was trained on piano lessons (MUS group), and a no-contact control group did not participate in any intervention (CON group). Increased performance in oculomotor inhibition, as measured by the antisaccade task, and increased grey matter in the right FEF was observed uniquely in the VID group. These results demonstrate that 3D-platform video game training can improve inhibitory control known to decline with age.


Frontal eye fields Attention Antisaccade Cognitive training Video game Ageing 



This project was supported by a Canadian Institutes of Health Research Grant: to Sylvie Belleville and a Natural science and engineering research council of Canada grant to Greg L West (436140-2013):


  1. Andres P, Van der Linden M (2000) Age-related differences in supervisory attentional system functions. J Gerontol Ser B Psychol Sci Soc Sci 55(6):P373–P380. CrossRefGoogle Scholar
  2. Anguera JA, Boccanfuso J, Rintoul JL, Al-Hashimi O, Faraji F, Janowich J, Gazzaley A (2013) Video game training enhances cognitive control in older adults. Nature 501(7465):97–101. CrossRefGoogle Scholar
  3. Antoniades CA, Demeyere N, Kennard C, Humphreys GW, Hu MT (2015) Antisaccades and executive dysfunction in early drug-naive Parkinson’s disease: The discovery study. Mov Disord 30(6):843–847CrossRefGoogle Scholar
  4. Ashburner J, Friston KJ (2000) Voxel-based morphometry—the methods. NeuroImage 11(6):805–821. CrossRefGoogle Scholar
  5. Basak C, Boot WR, Voss MW, Kramer AF (2008) Can training in a real-time strategy video game attenuate cognitive decline in older adults? Psychol Aging 23(4):765–777. CrossRefGoogle Scholar
  6. Bohbot VD, Lerch J, Thorndycraft B, Iaria G, Zijdenbos AP (2007) Gray matter differences correlate with spontaneous strategies in a human virtual navigation task. J Neurosci 27(38):10078–10083. CrossRefGoogle Scholar
  7. Bowling AC, Hindman EA, Donnelly JF (2012) Prosaccade errors in the antisaccade task: differences between corrected and uncorrected errors and links to neuropsychological tests. Exp Brain Res 216(2):169–179. CrossRefGoogle Scholar
  8. Boxer AL, Garbutt S, Seeley WW, Jafari A, Heuer HW, Mirsky J, Miller BL (2012) Saccade abnormalities in autopsy-confirmed frontotemporal lobar degeneration and alzheimer disease. Arch Neurol 69(4):509–517. CrossRefGoogle Scholar
  9. Butler KM, Zacks RT, Henderson JM (1999) Suppression of reflexive saccades in younger and older adults: age comparisons on an antisaccade task. Memory Cognition 27(4):584–591. CrossRefGoogle Scholar
  10. Castel AD, Pratt J, Drummond E (2005) The effects of action video game experience on the time course of inhibition of return and the efficiency of visual search. Acta Physiol (Oxf) 119(2):217–230. Google Scholar
  11. Chisholm JD, Kingstone A (2012) Improved top-down control reduces oculomotor capture: the case of action video game players. Atten Percept Psychophys 74(2):257–262. CrossRefGoogle Scholar
  12. Cormier SM, Hagman JD (2014) Transfer of learning: contemporary research and applications. Elsevier Science, Consulté à l’adresse.
  13. Crawford TJ, Higham CS, Renvoize T, Patel J, Dale M, Suriya A, Tetley S (2005) Inhibitory control of saccadic eye movements and cognitive impairment in Alzheimer’s disease. Biol Psychiatry 57:1052–1060CrossRefGoogle Scholar
  14. Eskildsen SF, Coupé P, Fonov V, Manjón JV, Leung KK, Guizard N, Collins DL (2012) BEaST: brain extraction based on nonlocal segmentation technique. NeuroImage 59(3):2362–2373. CrossRefGoogle Scholar
  15. Ettinger U, Antonova E, Crawford TJ, Mitterschiffthaler MT, Goswani S, Sharma T, Kumari V (2005) Structural neural correlates of prosaccade and antisaccade eye movements in healthy humans. Neuroimage 24:487–494CrossRefGoogle Scholar
  16. Everling S, Fischer B (1998) The antisaccade: a review of basic research and clinical studies. Neuropsychologia 36(9):885–899. CrossRefGoogle Scholar
  17. Feng J, Spence I, Pratt J (2007) Playing an action video game reduces gender differences in spatial cognition. Psychol Sci 18(10):850–855. CrossRefGoogle Scholar
  18. Filippi M, Horsfield M, Hajnal J, Narayana P, Udupa J, Yousry T, Zijdenbos A (1998) Quantitative assessment of magnetic resonance imaging lesion load in multiple sclerosis. J Neurol Neurosurg Psychiatry 64(Suppl 1):S88–S93Google Scholar
  19. Gozli DG, Bavelier D, Pratt J (2014) The effect of action video game playing on sensorimotor learning: evidence from a movement tracking task. Hum Mov Sci 38:152–162. CrossRefGoogle Scholar
  20. Green CS, Bavelier D (2003) Action video game modifies visual selective attention. Nature 423(6939):534–537. CrossRefGoogle Scholar
  21. Green CS, Bavelier D (2007) Action-video-game experience alters the spatial resolution of vision. Psychol Sci 18(1):88–94. CrossRefGoogle Scholar
  22. Hallett PE (1978) Primary and secondary saccades to goals defined by instructions. Vis Res 18(10):1279–1296. CrossRefGoogle Scholar
  23. Hasher L, Zacks RT, May CP (1999) Inhibitory control, circadian arousal, and age. In: Attention and performance XVII: cognitive regulation of performance: interaction of theory and application. pp 653–675Google Scholar
  24. Hellmuth J, Mirsky J, Heuer HW, Matlin A, Jafari A, Garbutt S, Boxer AL (2012) Multicenter validation of a bedside antisaccade task as a measure of executive function. Neurology 78(23):1824–1831. CrossRefGoogle Scholar
  25. Hood AJ, Amador SC, Cain AE, Briand KA, Al-Refai AH, Schiess MC, Sereno AB (2007) Levodopa slows prosaccades and improves antisaccades: an eye movement study in Parkinson’s disease. J Neurol Neurosurg Psychiatry 78(6):565–570CrossRefGoogle Scholar
  26. Hutton SB, Ettinger U (2006) The antisaccade task as a research tool in psychopathology: a critical review. Psychophysiology 43(3):302–313CrossRefGoogle Scholar
  27. Iaria G, Petrides M, Dagher A, Pike B, Bohbot VD (2003) Cognitive strategies dependent on the hippocampus and caudate nucleus in human navigation: variability and change with practice. J Neurosci 23(13):5945. CrossRefGoogle Scholar
  28. Kaufman LD, Pratt J, Levine B, Black SE (2012) Executive deficits detected in mild Alzheimer’s disease using the antisaccade task. Brain Behav 2:15–21CrossRefGoogle Scholar
  29. Konishi K, Bohbot VD (2013) Spatial navigational strategies correlate with gray matter in the hippocampus of healthy older adults tested in a virtual maze. Front Aging Neurosci 5:1. CrossRefGoogle Scholar
  30. Kühn S, Gleich T, Lorenz RC, Lindenberger U, Gallinat J (2014) Playing Super Mario induces structural brain plasticity: gray matter changes resulting from training with a commercial video game. Mol Psychiatry 19(2):265–271. CrossRefGoogle Scholar
  31. Miller EK (2000) The prefontral cortex and cognitive control. Nat Rev Neurosci 1(1):59–65. CrossRefGoogle Scholar
  32. Mirsky JB, Heuer HW, Jafari A, Kramer JH, Schenk AK, Viskontas IV, Boxer AL (2011) Anti-saccade performance predicts executive function and brain structure in normal elders. Cognit Behav Neurol 24(2):50–58. CrossRefGoogle Scholar
  33. Munoz DP, Everling S (2004) Look away: the anti-saccade task and the voluntary control of eye movement. Nat Rev Neurosci 5(3):218–228. CrossRefGoogle Scholar
  34. Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, Chertkow H (2005) The montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 53(4):695–699. CrossRefGoogle Scholar
  35. Nieuwenhuis S, Ridderinkhof KR, de Jong R, Kok A, van der Molen MW (2000) Inhibitory inefficiency and failures of intention activation: age-related decline in the control of saccadic eye movements. Psychol Aging 15(4):635–647. CrossRefGoogle Scholar
  36. Nieuwenhuis S, Broerse A, Nielen MMA, Jong R (2004) A goal activation approach to the study of executive function: an application to antisaccade tasks. Neurocognit Mech Perform Monit Inhib Control 56(2):198–214. Google Scholar
  37. Olincy A, Ross R, Youngd D, Freedman R (1997) Age diminishes performance on an antisaccade eye movement task. Neurobiol Aging 18(5):483–489. CrossRefGoogle Scholar
  38. Sadedin SP, Pope B, Oshlack A (2012) Bpipe: a tool for running and managing bioinformatics pipelines. Bioinformatics 28(11):1525–1526. CrossRefGoogle Scholar
  39. Strobach T, Frensch PA, Schubert T (2012) Video game practice optimizes executive control skills in dual-task and task switching situations. Acta Physiol (Oxf) 140(1):13–24. Google Scholar
  40. Sweeney JA, Rosano C, Berman RA, Luna B (2001) Inhibitory control of attention declines more than working memory during normal aging. Neurobiol Aging 22(1):39–47. CrossRefGoogle Scholar
  41. Wecker NS, Kramer JH, Wisniewski A, Delis DC, Kaplan E (2000) Age effects on executive ability. Neuropsychology 14(3):409–414. CrossRefGoogle Scholar
  42. West GL, Stevens SA, Pun C, Pratt J (2008) Visuospatial experience modulates attentional capture: evidence from action video game players. J Vis 8(16):13–13. CrossRefGoogle Scholar
  43. West GL, Al-Aidroos N, Pratt J (2013) Action video game experience affects oculomotor performance. Acta Physiol (Oxf) 142(1):38–42. Google Scholar
  44. West GL, Drisdelle BL, Konishi K, Jackson J, Jolicoeur P, Bohbot VD (2015) Habitual action video game playing is associated with caudate nucleus-dependent navigational strategies. Proc R Soc B Biol Sci 282(1808):20142952–20142952. CrossRefGoogle Scholar
  45. West GL, Konishi K, Diarra M, Benady-Chorney J, Drisdelle BL, Dahmani L, Bohbot VD (2017a) Impact of video games on plasticity of the hippocampus. Mol Psychiatry. Google Scholar
  46. West GL, Zendel BR, Konishi K, Benady-Chorney J, Bohbot VD et al (2017b) Playing Super Mario 64 increases hippocampal grey matter in older adults. PLOS ONE 12(12):e0187779. CrossRefGoogle Scholar
  47. Winocur G, Craik FIM, Levine B, Robertson IH, Binns MA, Alexander M, Stuss DT (2007) Cognitive rehabilitation in the elderly: overview and future directions. J Int Neuropsychol Soc 13(01):166–171. Google Scholar
  48. Wolfe PL, Lehockey KA (2016) Neuropsychological assessment of driving capacity. Arch Clin Neuropsychol 31(6):517–529. CrossRefGoogle Scholar
  49. Yoon U, Fonov VS, Perusse D, Evans AC (2009) The effect of template choice on morphometric analysis of pediatric brain data. NeuroImage 45(3):769–777. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Moussa Diarra
    • 1
  • Benjamin Rich Zendel
    • 2
    • 3
    • 4
  • Jessica Benady-Chorney
    • 1
  • Caroll-Ann Blanchette
    • 1
  • Franco Lepore
    • 1
  • Isabelle Peretz
    • 1
    • 3
  • Sylvie Belleville
    • 1
    • 2
  • Greg L. West
    • 1
    • 3
    Email author
  1. 1.Centre de Recherche en Neuropsychologie et CogntionUniversity of MontrealMontrealCanada
  2. 2.Institut universitaire de gériatrie de MontréalMontrealCanada
  3. 3.International Laboratory for BrainMusic and Sound Research (BRAMS)MontrealCanada
  4. 4.Division of Community Health and Humanities, Faculty of MedicineMemorial University of NewfoundlandSt. John’sCanada

Personalised recommendations