Correlations between executive functions and adaptation to incrementally increasing sensorimotor discordances

Abstract

A previous study reported that movement directions adapt much better to 60° target displacements (double steps) when target displacements are introduced incrementally and not abruptly. The present study tested whether incremental adaptation to 60° discordances can be explained by specific cognitive abilities. The results showed that an increase of discordance size during adaptation enhanced reaction times. Furthermore, the individual performance in neuropsychological tests measuring sustained attention, figural fluency and perseveration predicted the rate of adaptation at different discordance sizes. These results are discussed with reference to recent models on directional selectivity and modularity during visually guided reaching.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Anderson V, Jacobs R, Anderson PJ (2008) Executive functions and the frontal lobes: a lifespan perspective. Neuropsychology, neurology, and cognition. Taylor & Francis, Philadelphia

    Google Scholar 

  2. Anguera JA, Bernard JA, Jaeggi SM, Buschkuehl M, Benson BL, Jennett S, Humfleet J, Reuter-Lorenz PA, Jonides J, Seidler RD (2012) The effects of working memory resource depletion and training on sensorimotor adaptation. Behav Brain Res 228(1):107–115. https://doi.org/10.1016/j.bbr.2011.11.040

    Article  PubMed  Google Scholar 

  3. Bedard P, Song J-H (2013) Attention modulates generalization of visuomotor adaptation. J Vis 13(12):12. https://doi.org/10.1167/13.12.12

    Article  PubMed  Google Scholar 

  4. Bedford FL (1993) Perceptual and cognitive spatial learning. J Exp Psychol Hum Percept Perform 19:517–530. https://doi.org/10.1037/0096-1523.19.3.517

    CAS  Article  PubMed  Google Scholar 

  5. Bock O (2005) Components of sensorimotor adaptation in young and elderly subjects. Exp Brain Res 160(2):259–263. https://doi.org/10.1007/s00221-004-2133-5

    Article  PubMed  Google Scholar 

  6. Bock O (2013) Basic principles of sensorimotor adaptation to different distortions with different effectors and movement types: a review and synthesis of behavioral findings. Front Hum Neurosci 7:81. https://doi.org/10.3389/fnhum.2013.00081

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bock O, Girgenrath M (2006) Relationship between sensorimotor adaptation and cognitive functions in younger and older subjects. Exp Brain Res 169(3):400–406. https://doi.org/10.1007/s00221-005-0153-4

    Article  PubMed  Google Scholar 

  8. Bock O, Schmitz G (2011) Adaptation to rotated visual feedback depends on the number and spread of target directions. Exp Brain Res 209(3):409–413. https://doi.org/10.1007/s00221-011-2564-8

    Article  PubMed  Google Scholar 

  9. Bock O, Schmitz G, Grigorova V (2008) Transfer of adaptation between ocular saccades and arm movements. Hum Mov Sci 27(3):383–395. https://doi.org/10.1016/j.humov.2008.01.001

    Article  PubMed  Google Scholar 

  10. Bock O, Grigorova V, Ilieva-Staneva M (2017) Adaptation of reactive saccades is influenced by unconscious priming of the attention focus. J Mot Behav 49(5):477–481. https://doi.org/10.1080/00222895.2016.1241746

    Article  PubMed  Google Scholar 

  11. Bortz J (2005) Statistik für Human- und Sozialwissenschaftler (Statistics for human- and social-scientists). Springer, New York

    Google Scholar 

  12. Christou AI, Miall RC, McNab F, Galea JM (2016) Individual differences in explicit and implicit visuomotor learning and working memory capacity. Sci Rep 6:36633. https://doi.org/10.1038/srep36633

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Cotti J, Guillaume A, Alahyane N, Pelisson D, Vercher J-L (2007) Adaptation of voluntary saccades, but not of reactive saccades, transfers to hand pointing movements. J Neurophysiol 98:602–612. https://doi.org/10.1152/jn.00293.2007

    Article  PubMed  Google Scholar 

  14. Deubel H (1987) Aadaptivity of gain and direction in oblique saccades. In: O’Regan JK, Levy-Schoen A (eds) Eye movements from physiology to cognition. Elsevier, Amsterdam, pp 181–190

    Google Scholar 

  15. Eisenberg M, Shmuelof L, Vaadia E, Zohary E (2011) The representation of visual and motor aspects of reaching movements in the human motor cortex. J Neurosci 31(34):12377–12384. https://doi.org/10.1523/JNEUROSCI.0824-11.2011

    CAS  Article  PubMed  Google Scholar 

  16. Eversheim U, Bock O (2001) Evidence for processing stages in skill acquisition: a dual-task study. Learn Mem 8(4):183–189. https://doi.org/10.1101/lm.39301

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Fernandez-Ruiz J, Wong W, Armstrong IT, Flanagan JR (2011) Relation between reaction time and reach errors during visuomotor adaptation. Behav Brain Res 219(1):8–14. https://doi.org/10.1016/j.bbr.2010.11.060

    Article  PubMed  Google Scholar 

  18. Ghahramani Z, Wolpert DM (1997) Modular decomposition in visuomotor learning. Nature 386(6623):392–395. https://doi.org/10.1038/386392a0

    CAS  Article  PubMed  Google Scholar 

  19. Grigorova V, Bock O, Borisova S (2013) Concurrent adaptation of reactive saccades and hand pointing movements to equal and to opposite changes of target direction. Exp Brain Res 226:63–71. https://doi.org/10.1007/s00221-013-3411-x

    Article  PubMed  Google Scholar 

  20. Haar S, Donchin O, Dinstein I (2015) Dissociating visual and motor directional selectivity using visuomotor adaptation. J Neurosci 35(17):6813–6821. https://doi.org/10.1523/JNEUROSCI.0182-15.2015

    CAS  Article  PubMed  Google Scholar 

  21. Haid TH, Martl C, Schubert F, Wenzl M, Kofler M, Saltuari L (2002) Der “HAMASCH 5 Punkt test”. erste Normierungsergebnisse. Zeitschrift für Neuropsychologie 13:233

    Google Scholar 

  22. Hauser MD (1999) Perseveration, inhibition and the prefrontal cortex: a new look. Curr Opin Neurobiol 9(2):214–222

    CAS  Article  Google Scholar 

  23. Huberdeau DM, Krakauer JW, Haith AM (2015) Dual-process decomposition in human sensorimotor adaptation. Curr Opin Neurobiol 33:71–77. https://doi.org/10.1016/j.conb.2015.03.003

    CAS  Article  PubMed  Google Scholar 

  24. Imamizu H, Uno Y, Kawato M (1995) Internal representations of the motor apparatus: implications from generalization in visuomotor learning. J Exp Psychol Hum Percept Perform 21(5):1174–1198

    CAS  Article  Google Scholar 

  25. Kagerer FA, Contreras-Vidal JL, Stelmach GE (1997) Adaptation to gradual as compared with sudden visuo-motor distortions. Exp Brain Res 115:557–561

    CAS  Article  Google Scholar 

  26. Kessels RP, van Zandvoort MJ, Postma A, Kappelle LJ, Haan EH de (2000) The corsi block-tapping task: standardization and normative data. Appl Neuropsychol 7:252–258. https://doi.org/10.1207/S15324826AN0704_8

    CAS  Article  PubMed  Google Scholar 

  27. Kim S, Ogawa K, Lv J, Schweighofer N, Imamizu H, Ashe J (2015) Neural substrates related to motor memory with multiple timescales in sensorimotor adaptation. PLoS Biol 13(12):e1002312. https://doi.org/10.1371/journal.pbio.1002312

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Krakauer JW, Pine ZM, Ghilardi MF, Ghez C (2000) Learning of visuomotor transformations for vectorial planning of reaching trajectories. J Neurosci 20(23):8916–8924

    CAS  Article  Google Scholar 

  29. Lee J-Y, Schweighofer N (2009) Dual adaptation supports a parallel architecture of motor memory. J Neurosci 29:10396–10404. https://doi.org/10.1523/JNEUROSCI.1294-09.2009

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Mahan MY, Georgopoulos AP (2013) Motor directional tuning across brain areas: directional resonance and the role of inhibition for directional accuracy. Front Neural Circuits 7:92. https://doi.org/10.3389/fncir.2013.00092

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mazzoni P, Krakauer JW (2006) An implicit plan overrides an explicit strategy during visuomotor adaptation. J Neurosci 26(14):3642–3645. https://doi.org/10.1523/JNEUROSCI.5317-05.2006

    CAS  Article  PubMed  Google Scholar 

  32. McDougle SD, Taylor JA (2018) Dissociable roles for working memory in sensorimotor learning. bioRxiv. https://doi.org/10.1101/290189

    Article  Google Scholar 

  33. McDougle SD, Bond KM, Taylor JA (2015) Explicit and implicit processes constitute the fast and slow processes of sensorimotor learning. J Neurosci 35(26):9568–9579. https://doi.org/10.1523/JNEUROSCI.5061-14.2015

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. McLaughlin SC (1967) Parametric adjustment in saccadic eye movements. Percept Psychophys 2:359–362

    Article  Google Scholar 

  35. McNay EC, Willingham DB (1998) Deficit in learning of a motor skill requiring strategy, but not of perceptuomotor recalibration, with aging. Learn Mem 4(5):411–420

    CAS  Article  Google Scholar 

  36. Michel C, Pisella L, Prablanc C, Rode G, Rossetti Y (2007) Enhancing visuomotor adaptation by reducing error signals: single-step (aware) versus multiple-step (unaware) exposure to wedge prisms. J Cogn Neurosci 19:341–350. https://doi.org/10.1162/jocn.2007.19.2.341

    Article  PubMed  Google Scholar 

  37. Moosbrugger H, Oehlschlaegel J, Steinwascher M (2011) Frankfurter Aufmerksamkeits-Inventar 2 (Frankfurter Attentional Inventory 2). Verlag Hans Huber, Bern

    Google Scholar 

  38. Neville K-M, Cressman EK (2018) The influence of awareness on explicit and implicit contributions to visuomotor adaptation over time. Exp Brain Res. https://doi.org/10.1007/s00221-018-5282-7

    Article  PubMed  Google Scholar 

  39. Noto CT, Watanabe S, Fuchs AF (1999) Characteristics of simian adaptation fields produced by behavioral changes in saccade size and direction. J Neurophysiol 81:2798–2813. https://doi.org/10.1152/jn.1999.81.6.2798

    CAS  Article  PubMed  Google Scholar 

  40. Redding GM, Wallace B (1996) Adaptive spatial alignment and strategic perceptual-motor control. J Exp Psychol Hum Percept Perform 22(2):379–394

    CAS  Article  Google Scholar 

  41. Regard M, Strauss E, Knapp P (1982) Children’s production on verbal and non-verbal fluency tasks. Percept Mot Skills 55(3 Pt 1):839–844. https://doi.org/10.2466/pms.1982.55.3.839

    CAS  Article  PubMed  Google Scholar 

  42. Reitan RM (1959) Manual for administration of neuropsychological test batteries for adults and children. Reitan Neuropsychological Laboratories, Tucson

    Google Scholar 

  43. Saunders JA, Knill DC (2003) Humans use continuous visual feedback from the hand to control fast reaching movements. Exp Brain Res 152(3):341–352. https://doi.org/10.1007/s00221-003-1525-2

    Article  PubMed  Google Scholar 

  44. Schmitz G (2014) Visuo- und audiomotorische Adaptation. Hofmann-Verlag, Schorndorf

    Google Scholar 

  45. Schmitz G (2016) Interference between adaptation to double steps and adaptation to rotated feedback in spite of differences in directional selectivity. Exp Brain Res 234(6):1491–1504. https://doi.org/10.1007/s00221-016-4559-y

    Article  PubMed  Google Scholar 

  46. Schmitz G, Bock O, Grigorova V, Ilieva M (2010) Adaptation of eye and hand movements to target displacements of different size. Exp Brain Res 203(2):479–484. https://doi.org/10.1007/s00221-010-2245-z

    Article  PubMed  PubMed Central  Google Scholar 

  47. Schmitz G, Bock O, Grigorova V, Borisova S (2012) Adaptation of hand movements to double-step targets and to distorted visual feedback: evidence for shared mechanisms. Hum Mov Sci 31(4):791–800. https://doi.org/10.1016/j.humov.2011.08.003

    Article  PubMed  Google Scholar 

  48. Seidler RD, Carson RG (2017) Sensorimotor learning: neurocognitive mechanisms and individual differences. J Neuroeng Rehabil 14:74. https://doi.org/10.1186/s12984-017-0279-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. Seidler RD, Bo J, Anguera JA (2012) Neurocognitive contributions to motor skill learning: the role of working memory. J Mot Behav 44(6):445–453. https://doi.org/10.1080/00222895.2012.672348

    Article  PubMed  PubMed Central  Google Scholar 

  50. Shadmehr R, Smith MA, Krakauer JW (2010) Error correction, sensory prediction, and adaptation in motor control. Annu Rev Neurosci 33:89–108. https://doi.org/10.1146/annurev-neuro-060909-153135

    CAS  Article  PubMed  Google Scholar 

  51. Simon A, Bock O (2015) Does visuomotor adaptation proceed in stages? An examination of the learning model by chein and schneider (2012). J Mot Behav 47(6):503–508. https://doi.org/10.1080/00222895.2015.1015677

    Article  PubMed  Google Scholar 

  52. Simon A, Bock O (2016) Influence of divergent and convergent thinking on visuomotor adaptation in young and older adults. Hum Mov Sci 46:23–29. https://doi.org/10.1016/j.humov.2015.11.020

    Article  PubMed  Google Scholar 

  53. Smith MA, Ghazizadeh A, Shadmehr R (2006) Interacting adaptive processes with different timescales underlie short-term motor learning. PLoS Biol 4(6):e179. https://doi.org/10.1371/journal.pbio.0040179

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. Spreen O, Strauss E (1998) A compendium of neuropsychological tests: administration, norms and commentary, 2nd edn. Oxford University Press, New York

    Google Scholar 

  55. Tanaka H, Sejnowski TJ, Krakauer JW (2009) Adaptation to visuomotor rotation through interaction between posterior parietal and motor cortical areas. J Neurophysiol 102:2921–2932. https://doi.org/10.1152/jn.90834.2008

    Article  PubMed  PubMed Central  Google Scholar 

  56. Taylor JA, Thoroughman KA (2007) Divided attention impairs human motor adaptation but not feedback control. J Neurophysiol 98(1):317–326. https://doi.org/10.1152/jn.01070.2006

    Article  PubMed  Google Scholar 

  57. Taylor JA, Krakauer JW, Ivry RB (2014) Explicit and implicit contributions to learning in a sensorimotor adaptation task. J Neurosci 34:3023–3032. https://doi.org/10.1523/JNEUROSCI.3619-13.2014

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. Tucha L, Aschenbrenner S, Koerts J, Lange KW, Erausquin GA de (2012) The five-point test: reliability, validity and normative data for children and adults. PLoS One 7(9):e46080. https://doi.org/10.1371/journal.pone.0046080

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. Weiner MJ, Hallett M, Funkenstein HH (1983) Adaptation to lateral displacement of vision in patients with lesions of the central nervous system. Neurology 33(6):766–772

    CAS  Article  Google Scholar 

  60. Welch RB (1978) Perceptual modification: adapting to altered sensory environments. Academic Press Series in Cognition and Perception. Academic Press, Cambridge

    Google Scholar 

  61. Wolpert DM, Kawato M (1998) Multiple paired forward and inverse models for motor control. Neural Netw 11(7–8):1317–1329

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gerd Schmitz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures were applied in accordance with the ethical standards of the institutional research and ethics committee and with the 1964 Helsinki declaration and its later amendments. Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schmitz, G., Dierking, M. & Guenther, A. Correlations between executive functions and adaptation to incrementally increasing sensorimotor discordances. Exp Brain Res 236, 3417–3426 (2018). https://doi.org/10.1007/s00221-018-5388-y

Download citation

Keywords

  • Sensorimotor adaptation
  • Executive functions
  • Motor control
  • Modularity
  • Directional selectivity