Experimental Brain Research

, Volume 236, Issue 6, pp 1725–1734 | Cite as

Verticality perception reveals a vestibular deficit in adolescents with idiopathic scoliosis

  • Nikoleta Antoniadou
  • Vassilia Hatzitaki
  • Stavros Ι Stavridis
  • Eythimios Samoladas
Research Article


Adolescent idiopathic scoliosis (AIS) is a three-dimensional spine deformation with elusive aetiopathogenesis. One appealing hypothesis points to its neurologic origin with an emphasis on a vestibular impairment. In the present study, we explored the hypothesis of a vestibular deficit accompanying AIS by assessing differences in the subjective estimation of the gravitational vertical between adolescents with idiopathic scoliosis (n = 10, age 11–16 years, Cobb’s angle > 15°) and healthy age-matched controls (n = 10). Group participants actively controlled the verticality of a visual line in two visual conditions (eyes open-visual feedback and eyes closed-no visual feedback) and using three different segments (hand, head, and trunk). An electromagnetic tracking sensor (Nest of Birds, Ascension Ltd., USA, 60 Hz), attached either to a hand-held rod, the head, or the upper trunk, measured the line’s deviation from the gravitational vertical that was reflected in two measures, the mean absolute and variable error. The head’s medio-lateral tilt when estimating verticality with the hand was also registered. Analysis revealed that adolescents with idiopathic scoliosis made a greater error than control participants when estimating verticality with the head and eyes closed. In addition, they adopted a significantly greater head tilt when estimating the vertical by controlling the hand-held rod, regardless of the availability of vision. The error in the earth vertical was greater when the estimate was performed in the absence of vision. Results suggest a malfunction of the vestibular system and/or a sensorimotor integration impairment in patients with AIS, while vision compensates for the observed deficit in estimating the earth vertical.


Spine Gravity Labyrinth Proprioception Vision Sensory integration 



The research leading to these results has received funding from the Spine Society of Europe (EUROSPINE) under Grant Agreement Number 94236.


  1. Assaiante C, Mallau S, Jouve JL et al (2012) Do adolescent idiopathic scoliosis (AIS) neglect proprioceptive information in sensory integration of postural control? PLoS One 7:1–9. CrossRefGoogle Scholar
  2. Aulisa AG, Guzzanti V, Galli M et al (2013) The familiarity of idiopathic scoliosis: statistical analysis and clinical considerations. Eur J Orthop Surg Traumatol 23:781–784. CrossRefPubMedGoogle Scholar
  3. Azeddine B, Letellier K, Wang DS et al (2007) Molecular determinants of melatonin signaling dysfunction in adolescent idiopathic scoliosis. Clin Orthop Relat Res 462:45–52. CrossRefPubMedGoogle Scholar
  4. Barra J, Marquer A, Joassin R et al (2010) Humans use internal models to construct and update a sense of verticality. Brain 133:3552–3563. CrossRefPubMedGoogle Scholar
  5. Bergmann J, Kreuzpointner M-A, Krewer C et al (2015) The subjective postural vertical in standing: reliability and normative data for healthy subjects. Atten Percept Psychophys 77:953–960. CrossRefPubMedGoogle Scholar
  6. Brandt T, Dieterich M, Danek A (1994) Vestibular cortex lesions affect the perception of verticality. Ann Neurol 35:403–412. CrossRefPubMedGoogle Scholar
  7. Čakrt O, Slabý K, Viktorinová L et al (2011) Subjective visual vertical in patients with idiopatic scoliosis. J Vestib Res Equilib Orientat 21:161–165. CrossRefGoogle Scholar
  8. Catanzariti JF, Agnani O, Guyot MA et al (2014) Does adolescent idiopathic scoliosis relate to vestibular disorders? A systematic review. Ann Phys Rehabil Med 57:465–479. CrossRefPubMedGoogle Scholar
  9. Chen Z, Qiu Y, Ma W et al (2014) Comparison of somatosensory evoked potentials between adolescent idiopathic scoliosis and congenital scoliosis without neural axis abnormalities. Spine J 14:1095–1098. CrossRefPubMedGoogle Scholar
  10. Cheung J, Sluiter WJ, Veldhuizen AG et al (2002) Perception of vertical and horizontal orientation in children with scoliosis. J Orthop Res 20:416–420. CrossRefPubMedGoogle Scholar
  11. Dieterich M, Brandt T (1993) Ocular torsion and tilt of subjective visual vertical are sensitive brainstem signs. Ann Neurol 33:292–299. CrossRefPubMedGoogle Scholar
  12. Domenech J, García-Martí G, Martí-Bonmatí L et al (2011) Abnormal activation of the motor cortical network in idiopathic scoliosis demonstrated by functional MRI. Eur Spine J 20:1069–1078. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Farrer C, Franck N, Paillard J, Jeannerod M (2003) The role of proprioception in action recognition. Conscious Cogn 12:609–619. CrossRefPubMedGoogle Scholar
  14. Hawasli AH, Hullar TE, Dorward IG (2014) Idiopathic scoliosis and the vestibular system. Eur Spine J 24:227–233. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Henn V, Cohen B, Young LR (1980) Visual-vestibular interaction in motion perception and the generation of nystagmus. Neurosci Res Program Bull 18:457–651PubMedGoogle Scholar
  16. Hitier M, Hamon M, Denise P et al (2015) Lateral semicircular canal asymmetry in idiopathic scoliosis: an early link between biomechanical, hormonal and neurosensory theories? PLoS One 10:e0131120. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Justice CM, Miller NH, Marosy B et al (2003) Familial idiopathic scoliosis: evidence of an X-linked susceptibility locus. Spine (Phila Pa 1976) 28:589–594. CrossRefGoogle Scholar
  18. Kesling KL, Reinker KA (1997) Scoliosis in twins. A meta-analysis of the literature and report of six cases. Spine (Phila Pa 1976) 22:2009–2014 (discussion 2015) CrossRefGoogle Scholar
  19. Konieczny MR, Senyurt H, Krauspe R (2013) Epidemiology of adolescent idiopathic scoliosis. J Child Orthop 7:3–9CrossRefPubMedGoogle Scholar
  20. Lambert FM, Malinvaud D, Glaunes J et al (2009) Vestibular asymmetry as the cause of idiopathic scoliosis: a possible answer from Xenopus. J Neurosci 29:12477–12483. CrossRefPubMedGoogle Scholar
  21. Lambert FM, Malinvaud D, Gratacap M et al (2013) Restricted neural plasticity in vestibulospinal pathways after unilateral labyrinthectomy as the origin for scoliotic deformations. J Neurosci 33:6845–6856. CrossRefPubMedGoogle Scholar
  22. Mittelstaedt H (1999) The role of the otoliths in perception of the vertical and in path integration. Ann N Y Acad Sci 871:334–344CrossRefPubMedGoogle Scholar
  23. Moreau A, Wang DS, Forget S et al (2004) Melatonin signaling dysfunction in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 29:1772–1781CrossRefGoogle Scholar
  24. Patten SA, Moldovan F (2011) Could genetic determinants of inner ear anomalies be a factor for the development of idiopathic scoliosis? Med Hypotheses 76:438–440. CrossRefPubMedGoogle Scholar
  25. Pialasse JP, Laurendeau S, Descarreaux M et al (2013) Is abnormal vestibulomotor responses related to idiopathic scoliosis onset or severity? Med Hypotheses 80:234–236. CrossRefPubMedGoogle Scholar
  26. Pialasse JP, Descarreaux M, Mercier P et al (2015a) The vestibular-evoked postural response of adolescents with idiopathic scoliosis is altered. PLoS One 10:1–12. CrossRefGoogle Scholar
  27. Pialasse JP, Descarreaux M, Mercier P, Simoneau M (2015b) Sensory reweighting is altered in adolescent patients with scoliosis: evidence from a neuromechanical model. Gait Posture 42:558–563. CrossRefPubMedGoogle Scholar
  28. Rousie D, Hache JC, Pellerin P, Deroubaix JP, Van Tichelen P, Berthoz A (1999) Oculomotor, postural, and perceptual asymmetries associated with a common cause. Craniofacial asymmetries and asymmetries in vestibular organ anatomy. Ann NY Acad Sci 871:439–446CrossRefPubMedGoogle Scholar
  29. Rousie DL, Deroubaix JP, Joly O et al (2009) Abnormal connection between lateral and posterior semicircular canal revealed by a new modeling process: origin and physiological consequences. Ann N Y Acad Sci 1164:455–457. CrossRefPubMedGoogle Scholar
  30. Schuler JR, Bockisch CJ, Straumann D, Tarnutzer AA (2010) Precision and accuracy of the subjective haptic vertical in the roll plane. BMC Neurosci 11:83CrossRefPubMedPubMedCentralGoogle Scholar
  31. Shi L, Wang D, Chu WCW et al (2011) Automatic MRI segmentation and morphoanatomy analysis of the vestibular system in adolescent idiopathic scoliosis. Neuroimage 54:S180–S188. CrossRefPubMedGoogle Scholar
  32. Shi L, Wang D, Hui SCN et al (2013) Volumetric changes in cerebellar regions in adolescent idiopathic scoliosis compared with healthy controls. Spine J 13:1904–1911. CrossRefPubMedGoogle Scholar
  33. Simoneau M, Mercier P, Blouin J et al (2006a) Altered sensory-weighting mechanisms is observed in adolescents with idiopathic scoliosis. BMC Neurosci 7:68. CrossRefPubMedPubMedCentralGoogle Scholar
  34. Simoneau M, Richer N, Mercier P et al (2006b) Sensory deprivation and balance control in idiopathic scoliosis adolescent. Exp Brain Res 170:576–582. CrossRefPubMedGoogle Scholar
  35. Takasaki H, Treleaven J, Johnston V, Jull G (2012) Minimum repetitions for stable measures of visual dependency using the dot version of the computer-based Rod-Frame test. Man Ther 17:466–469. CrossRefPubMedGoogle Scholar
  36. Wai MGC, Jun WWW, Yee YAP et al (2014) A review of pinealectomy-induced melatonin-deficient animal models for the study of etiopathogenesis of adolescent idiopathic scoliosis. Int J Mol Sci 15:16484–16499. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Wajchenberg M, Lazar M, Cavaçana N et al (2010) Genetic aspects of adolescent idiopathic scoliosis in a family with multiple affected members: a research article. Scoliosis 5:7. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Wang D, Shi L, Chu WCW et al (2012) Abnormal cerebral cortical thinning pattern in adolescent girls with idiopathic scoliosis. Neuroimage 59:935–942. CrossRefPubMedGoogle Scholar
  39. Wang D, Shi L, Liu S et al (2013) Altered topological organization of cortical network in adolescent girls with idiopathic scoliosis. PLoS One 8:6–13. CrossRefGoogle Scholar
  40. Wiener-Vacher SR, Mazda K (1998) Asymmetric otolith vestibulo-ocular responses in children with idiopathic scoliosis. J Pediatr 132:1028–1032. CrossRefPubMedGoogle Scholar
  41. Yoder RM, Taube JS (2014) The vestibular contribution to the head direction signal and navigation. Front Integr Neurosci 8:1–13. CrossRefGoogle Scholar
  42. Zwergal A, Rettinger N, Frenzel C et al (2009) A bucket of static vestibular function. Neurology 72:1689–1692. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Motor Behavior and Adapted Physical Activity, Department of Physical Education and Sports SciencesAristotle University of ThessalonikiThessaloníkiGreece
  2. 2.Orthopeadics Division of Genimatas Hospital, Faculty of MedicineAristotle University of ThessalonikiThessaloníkiGreece
  3. 3.Spine ClinicAgios Loukas HospitalThessaloníkiGreece

Personalised recommendations