Skip to main content

The impact of perilaryngeal vibration on the self-perception of loudness and the Lombard effect

Abstract

The role of somatosensory feedback in speech and the perception of loudness was assessed in adults without speech or hearing disorders. Participants completed two tasks: loudness magnitude estimation of a short vowel and oral reading of a standard passage. Both tasks were carried out in each of three conditions: no-masking, auditory masking alone, and mixed auditory masking plus vibration of the perilaryngeal area. A Lombard effect was elicited in both masking conditions: speakers unconsciously increased vocal intensity. Perilaryngeal vibration further increased vocal intensity above what was observed for auditory masking alone. Both masking conditions affected fundamental frequency and the first formant frequency as well, but only vibration was associated with a significant change in the second formant frequency. An additional analysis of pure-tone thresholds found no difference in auditory thresholds between masking conditions. Taken together, these findings indicate that perilaryngeal vibration effectively masked somatosensory feedback, resulting in an enhanced Lombard effect (increased vocal intensity) that did not alter speakers’ self-perception of loudness. This implies that the Lombard effect results from a general sensorimotor process, rather than from a specific audio-vocal mechanism, and that the conscious self-monitoring of speech intensity is not directly based on either auditory or somatosensory feedback.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Adelman C, Fraenkel R, Kriksunov L, Sohmer H (2012) Interaction in the cochlea between air conduction and osseous and non-osseous bone conduction stimulation. Eur Arch Otorhinolaryngol 269:425–429

    Article  PubMed  Google Scholar 

  • Amazi DK, Garber SR (1982) The Lombard sign as a function of age and task. J Speech Hear Res 25:581–585

    Article  PubMed  CAS  Google Scholar 

  • Andreatta RD, Barlow SM (2009) Somatosensory gating is dependent on the rate of force recruitment in the human orofacial system. J Speech Lang Hear Res 52:1566–1578

    Article  PubMed  Google Scholar 

  • Baken RJ, Orlikoff RF (2000) Clinical measurement of speech and voice, 2nd edn. Cengage Learning, Boston

    Google Scholar 

  • Bosco C, Cardinale M, Tsarpela O (1999) Influence of vibration on mechanical power and electromyogram activity in human arm flexor muscles. Eur J Appl Physiol 79:306–311

    Article  CAS  Google Scholar 

  • Brajot F, Shiller DM, Gracco VL (2016) Autophonic loudness perception in Parkinson’s disease. J Acoust Soc Am 139:1364–1371

    Article  PubMed  PubMed Central  Google Scholar 

  • Cynx J, Lewis R, Tavel B, Tse H (1998) Amplitude regulation of vocalizations in noise by a songbird (Taeniopygia guttata). Anim Behav 56:107–113

    Article  PubMed  CAS  Google Scholar 

  • Dean MS, Martin FN (2000) Insert earphone depth and the occlusion effect. Am J Audiol 9:131–134

    Article  PubMed  CAS  Google Scholar 

  • Fairbanks G (1954) Systematic research in experimental phonetics: 1. A theory of the speech mechanism as a servosystem. J Speech Hear Disord 19:133–139

    Article  PubMed  CAS  Google Scholar 

  • Fairbanks G (1960) Voice and Articulation Drillbook, 2nd edn. Harper & Row, New York

    Google Scholar 

  • Fautrelle L, Bonnetblanc F (2012) On-line coordination in complex goal-directed movements: A matter of interaction between several loops. Brain Res Bull 89:57–64

    Article  PubMed  Google Scholar 

  • Friedman M (1937) The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Am Stat Assoc 32:675–701

    Article  Google Scholar 

  • Garnier M, Henric N, Dubois D (2010) Influence of sound immersion and communicative interaction on the Lombard effect. J Speech Lang Hear Res 53:588–608

    Article  PubMed  Google Scholar 

  • Guenther FH, Ghosh SS, Tourville JA (2006) Neural modeling and imaging of the cortical interactions underlying syllable production. Brain Lang 96:280–301

    Article  PubMed  Google Scholar 

  • Hammer MJ, Barlow SM (2010) Laryngeal somatosensory deficits in Parkinson’s disease: implications for speech respiratory and phonatory control. Exp Brain Res 201:401–409

    Article  PubMed  Google Scholar 

  • Hickok G (2012) Computational neuroanatomy of speech production. Nat Rev Neurosci 13:135–145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70

    Google Scholar 

  • Houde JF, Nagarajan SS (2011). Speech production as state feedback control. Frontiers Hum Neurosci. https://doi.org/10.3389/fnhum.2011.00082

    Article  Google Scholar 

  • Junqua JC (1993) The lombard reflex and its role on human listeners and automatic speech recognizers. J Acoust Soc Am 93(1):510–524

    Article  PubMed  CAS  Google Scholar 

  • Junqua JC (1996) The influence of acoustics on speech production: A noise-induced stress phenomenon known as the Lombard reflex. Speech Commun 20:13–22

    Article  Google Scholar 

  • Katseff S, Houde J, Johnson K (2011) Partial compensation for altered auditory feedback: a tradeoff with somatosensory feedback? Lang Speech 55:295–308

    Article  Google Scholar 

  • Kerrison PD (1918) The tests for malingering in defective hearing. Laryngoscope 28:662–665

    Article  Google Scholar 

  • Lametti DR, Nasir SM, Ostry DJ (2012) Sensory preference in speech production revealed by simultaneous alteration of auditory and somatosensory feedback. J Neurosci 32:9351–9358

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lane H, Tranel B (1971) The Lombard sign and the role of hearing in speech. J Speech Lang Hear Res 14:677–709

    Article  Google Scholar 

  • Lane HL, Catania AC, Stevens SS (1961) Voice level: autophonic scale, perceived loudness, and effects of sidetone. J Acoust Soc Am 33(2):160–167

    Article  Google Scholar 

  • Larson CR, Altman KW, Liu H, Hain TC (2008) Interactions between auditory and somatosensory feedback for voice F0 control. Exp Brain Res 187:613–621

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee BS (1950) Effects of delayed speech feedback. J Acoust Soc Am 22:824–826

    Article  Google Scholar 

  • Lee GS, Hsiao TY, Yang CCH, Kuo TBJ (2007) Effects of speech noise on vocal fundamental frequency using power spectral analysis. Ear Hear 28(3):343–350

    Article  PubMed  Google Scholar 

  • Letowski T, Frank T, Caravella J (1993) Acoustical properties of speech produced in noise presented through supra-aural earphones. Ear Hear 14(5):332–338

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Wang EQ, Metman LV, Larson CR (2012) Vocal response to perturbations in voice auditory feedback in individuals with Parkinson’s disease. PLoS One 7(3):e33629. https://doi.org/10.1371/journal.pone.0033629

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lombard E (1911) Le signe de l’élévation de la voix. Ann des Maladies d’Oreille Larynx Nez Pharynx 37:101–119

    Google Scholar 

  • Loucks TM, De Nil LF (2012) Oral sensorimotor integration in adults who stutter. Folia Phoniatr Logopaedica 64:116–121

    Article  Google Scholar 

  • Mu L, Sobotka S, Chen J, Su H, Sanders I et al (2013) Parkinson disease affects peripheral sensory nerves in the pharynx. J Neuropathol Exp Neurol 72(7):614–623

    Article  PubMed  PubMed Central  Google Scholar 

  • Nonaka S, Takahashi R, Enomoto K, Katada A, Unno T (1997) Lombard reflex during PAG-induced vocalization in decerebrate cats. Neurosci Res 29:283–289

    Article  PubMed  CAS  Google Scholar 

  • Pick HL Jr, Siegel GM, Fox PW, Garber SR, Kearney JK (1989) Inhibiting the Lombard effect. J Acoust Soc Am 85(2):894–900

    Article  PubMed  Google Scholar 

  • Pickett JM (1956) Effects of vocal force on the intelligibility of speech sounds. J Acoust Soc Am 28:902–905

    Article  Google Scholar 

  • Scheifele PM, Andrew S, Cooper RA, Darre M, Musiek FE et al (2005) Indication of a Lombard vocal response in the St. Lawrence River beluga. J Acoust Soc Am 117(3):1486–1492

    Article  PubMed  CAS  Google Scholar 

  • Schulman R (1989) Articulatory dynamics of loud and normal speech. J Acoust Soc Am 85(1):295–312

    Article  PubMed  CAS  Google Scholar 

  • Thierren AS, Lyons J, Balasubramaniam R (2012) Sensory attenuation of self-produced feedback: the Lombard effect revisited. PLoS ONE 7(11):e49370. https://doi.org/10.1371/journal.pone.0049370

    Article  CAS  Google Scholar 

  • Tian X, Poeppel D (2012) Mental imagery of speech and movement implicates the dynamics of internal forward models. Frontiers Psychol. https://doi.org/10.3389/fpsyg.2010.00166

    Article  Google Scholar 

  • Tian X, Zarate JM, Poeppel D (2016) Mental imagery of speech implicates two mechanisms of perceptual reactivation. Cortex 77:1–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Tian X, Ding N, Teng X, Bai F, Poeppel D (2018) Imagined speech influences perceived loudness of sound. Nat Hum Behav 2:225–234

    Article  Google Scholar 

  • Titze IR (1992) Acoustic interpretation of the voice range profile (phonetogram). J Speech Hear Res 35:21–34

    Article  PubMed  CAS  Google Scholar 

  • Tressler J, Schwartz C, Wellman P, Hughes S, Smotherman M (2011) Regulation of bat echolocation pulse acoustics by striatal dopamine. J Exp Biol 214:3238–3247

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Summers W, Pisoni DB, Bernacki RH, Pedlow RI, Stokes MA (1988) Effects of noise on speech production: Acoustic and perceptual analyses. J Acoust Soc Am 84(3):917–928

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zwislocki JJ, Goodman DA (1980) Absolute scaling of sensory magnitudes: a validation. Percept Psychophys 28:28–38

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Mark Tiede, Benjamin Elgie and Thomas Gisiger for technical assistance in preparing this experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François-Xavier Brajot.

Ethics declarations

Ethics/declaration

Parts of this study were presented in preliminary form at the 2015 Spring meeting of the Acoustical Society of America. The abstract from the proceedings was published in: The Journal of the Acoustical Society of America 137, 2434 (2015); https://doi.org/10.1121/1.4920888.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brajot, FX., Nguyen, D., DiGiovanni, J. et al. The impact of perilaryngeal vibration on the self-perception of loudness and the Lombard effect. Exp Brain Res 236, 1713–1723 (2018). https://doi.org/10.1007/s00221-018-5248-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-018-5248-9

Keywords