Kinematics of ventrally mediated grasp-to-eat actions: right-hand advantage is dependent on dorsal stream input

  • Clarissa Beke
  • Jason W. Flindall
  • Claudia L. R. Gonzalez
Research Article

Abstract

Studies have suggested a left-hemisphere specialization for visually guided grasp-to-eat actions by way of task-dependent kinematic asymmetries (i.e., smaller maximum grip apertures for right-handed grasp-to-eat movements than for right-handed grasp-to-place movements or left-handed movements of either type). It is unknown, however, whether this left-hemisphere/right-hand kinematic advantage is reliant on the dorsal “vision-for-action” visual stream. The present study investigates the kinematic differences between grasp-to-eat and grasp-to place actions performance during closed-loop (i.e., dorsally mediated) and open-loop delay (i.e., ventrally mediated) conditions. Twenty-one right-handed adult participants were asked to reach to grasp small food items to (1) eat them, or (2) place them in a container below the mouth. Grasps were performed in both closed-loop and open-loop delay conditions, in separate sessions. We show that participants displayed the right-hand grasp-to-eat kinematic advantage in the closed-loop condition, but not in the open-loop delay condition. As no task-dependent kinematic differences were found in ventrally mediated grasps, we posit that the left-hemisphere/right-hand advantage is dependent on dorsal stream processing.

Keywords

Reach-to-grasp Kinematics Dorsal stream Ventral stream Asymmetries Grasp-to-eat 

References

  1. Annett J, Annett M, Hudson P, Turner A (1979) The control of movement in the preferred and non-preferred hands. Q J Exp Psychol 31(4):641–652PubMedCrossRefGoogle Scholar
  2. Ansuini C, Giosa L, Turella L, Altoè G, Castiello U (2008) An object for an action, the same object for other actions: effects on hand shaping. Exp Brain Res 185(1):111–119PubMedCrossRefGoogle Scholar
  3. Ansuini C, Grigis K, Massaccesi S, Castiello U (2009) Breaking the flow of an action. Exp Brain Res 192(2):287–292PubMedCrossRefGoogle Scholar
  4. Armbrüster C, Spijkers W (2006) Movement planning in prehension: do intended actions influence the initial reach and grasp movement? Mot Control 10(4):311–329CrossRefGoogle Scholar
  5. Berthier NE, Clifton RK, Gullapalli V, McCall DD, Robin D (1996) Visual information and object size in the control of reaching. J Mot Behav 28:187–197PubMedCrossRefGoogle Scholar
  6. Bootsma RJ, Marteniuk RG, MacKenzie CL, Zaal FT (1994) The speed-accuracy trade-off in manual prehension: effects of movement amplitude, object size and object width on kinematic characteristics. Exp Brain Res 98(3):535–541PubMedCrossRefGoogle Scholar
  7. Boulinguez P, Nougier V, Velay J-L (2001) Manual asymmetries in reaching movement control. I: study of right-handers. Cortex 37(1):101–122PubMedCrossRefGoogle Scholar
  8. Carnahan H (1998) Manual asymmetries in response to rapid target movement. Brain Cogn 37(2):237–253PubMedCrossRefGoogle Scholar
  9. Carson RG, Chua R, Elliott D, Goodman D (1990) The contribution of vision to asymmetries in manual aiming. Neuropsychologia 28(11):1215–1220PubMedCrossRefGoogle Scholar
  10. Carson RG, Goodman D, Chua R, Elliott D (1993) Asymmetries in the regulation of visually guided aiming. J Mot Behav 25(1):21–32PubMedCrossRefGoogle Scholar
  11. Castiello U, Bennett K, Stelmach G (1993) Reach to grasp: the natural response to perturbation of object size. Exp Brain Res 94:163–178PubMedCrossRefGoogle Scholar
  12. Castiello U, Bennett K, Chambers H (1998) Reach to grasp: the response to a simultaneous perturbation of object position and size. Exp Brain Res 120(1):31–40PubMedCrossRefGoogle Scholar
  13. Cavill S, Bryden P (2003) Development of handedness: comparison of questionnaire and performance-based measures of preference. Brain Cogn 53(2):149–151PubMedCrossRefGoogle Scholar
  14. Duff SV, Sainburg RL (2007) Lateralization of motor adaptation reveals independence in control of trajectory and steady-state position. Exp Brain Res 179(4):551–561PubMedCrossRefGoogle Scholar
  15. Elliott D, Roy EA, Goodman D, Carson RG, Chua R, Maraj BK (1993) Asymmetries in the preparation and control of manual aiming movements. Can J Exp Psychol Revue canadienne de psychologie expérimentale 47(3):570CrossRefGoogle Scholar
  16. Ferri F, Campione GC, Dalla Volta R, Gianelli C, Gentilucci M (2010) To me or to you? When the self is advantaged. Exp Brain Res 203(4):637–646PubMedCrossRefGoogle Scholar
  17. Flindall JW, Gonzalez CL (2013) On the evolution of handedness: evidence for feeding biases. PLoS One 8(11):e78967PubMedPubMedCentralCrossRefGoogle Scholar
  18. Flindall JW, Gonzalez CL (2014) Eating interrupted: the effect of intent on hand-to-mouth actions. J Neurophysiol 112(8):2019–2025PubMedCrossRefGoogle Scholar
  19. Flindall JW, Gonzalez CL (2016) The destination defines the journey: an examination of the kinematics of hand-to-mouth movements. J Neurophysiol 116(5):2105–2113PubMedPubMedCentralCrossRefGoogle Scholar
  20. Flindall JW, Gonzalez CL (2017) The inimitable mouth: task-dependent kinematic differences are independent of terminal precision. Exp Brain Res 235(6):1945–1952PubMedCrossRefGoogle Scholar
  21. Flindall JW, Doan JB, Gonzalez CL (2014) Manual asymmetries in the kinematics of a reach-to-grasp action. Laterality Asymmetries Body Brain Cogn 19(4):489–507CrossRefGoogle Scholar
  22. Flindall JW, Stone KD, Gonzalez CL (2015) Evidence for right-hand feeding biases in a left-handed population. Laterality Asymmetries Body Brain Cogn 20(3):287–305CrossRefGoogle Scholar
  23. Goodale M, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15(1):20–25PubMedCrossRefGoogle Scholar
  24. Goodale M, Jakobson L, Keillor J (1994) Differences in the visual control of pantomimed and natural grasping movements. Neuropsychologia 32(10):1159–1178PubMedCrossRefGoogle Scholar
  25. Goodale M, Westwood DA, Milner AD (2004) Two distinct modes of control for object-directed action. Prog Brain Res 144:131–144PubMedCrossRefGoogle Scholar
  26. Grosskopf A, Kuhtz-Buschbeck JP (2006) Grasping with the left and right hand: a kinematic study. Exp Brain Res 168(1–2):230–240PubMedCrossRefGoogle Scholar
  27. Heath M, Binsted G (2007) Visuomotor memory for target location in near and far reaching spaces. J Mot Behav 39(3):169–177PubMedCrossRefGoogle Scholar
  28. Heath M, Westwood DA (2003) Can a visual representation support the online control of memory-dependent reaching? Evidence from a variable spatial mapping paradigm. Mot Control 7(4):349–365CrossRefGoogle Scholar
  29. Hesse C, Franz VH (2010) Grasping remembered objects: exponential decay of the visual memory. Vis Res 50(24):2642–2650PubMedCrossRefGoogle Scholar
  30. Hopkins WD, de Waal FB (1995) Behavioral laterality in captive bonobos (Pan paniscus): replication and extension. Int J Primatol 16(3):261–276CrossRefGoogle Scholar
  31. Hopkins WD, Bennett AJ, Bales SL, Lee J, Ward JP (1993) Behavioral laterality in captive bonobos (Pan paniscus). J Comp Psychol 107(4):403PubMedCrossRefGoogle Scholar
  32. Hopkins WD, Russell JL, Hook M, Braccini S, Schapiro SJ (2005) Simple reaching is not so simple: association between hand use and grip preferences in captive chimpanzees. Int J Primatol 26(2):259–277PubMedPubMedCentralCrossRefGoogle Scholar
  33. Hopkins WD, Phillips KA, Bania A, Calcutt SE, Gardner M, Russell J, Schapiro SJ et al (2011) Hand preferences for coordinated bimanual actions in 777 great apes: implications for the evolution of handedness in hominins. J Hum Evol 60(5):605–611PubMedPubMedCentralCrossRefGoogle Scholar
  34. Hu Y, Goodale M (2000) Grasping after a delay shifts size-scaling from absolute to relative metrics. J Cogn Neurosci 12(5):856–868PubMedCrossRefGoogle Scholar
  35. Hu Y, Eagleson R, Goodale M (1999) The effects of delay on the kinematics of grasping. Exp Brain Res 126(1):109–116PubMedCrossRefGoogle Scholar
  36. Marteniuk R, MacKenzie C, Jeannerod M, Athenes S, Dugas C (1987) Constraints on human arm movement trajectories. Can J Psychol Revue canadienne de psychologie 41(3):365CrossRefGoogle Scholar
  37. Milner AD, Goodale M (2006) The visual brain in action. Oxford University Press, OxfordCrossRefGoogle Scholar
  38. Milner AD, Goodale M (2008) Two visual systems re-viewed. Neuropsychologia 46(3):774–785PubMedCrossRefGoogle Scholar
  39. Mutha PK, Haaland KY, Sainburg RL (2013) Rethinking motor lateralization: specialized but complementary mechanisms for motor control of each arm. PLoS One 8(3):e58582PubMedPubMedCentralCrossRefGoogle Scholar
  40. Naish KR, Reader AT, Houston-Price C, Bremner AJ, Holmes NP (2013) To eat or not to eat? Kinematics and muscle activity of reach-to-grasp movements are influenced by the action goal, but observers do not detect these differences. Exp Brain Res 225(2):261–275PubMedCrossRefGoogle Scholar
  41. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113PubMedCrossRefGoogle Scholar
  42. Paulignan Y, Frak VG, Toni I, Jeannerod M (1997) Influence of object position and size on human prehension movements. Exp Brain Res 114:226–234PubMedCrossRefGoogle Scholar
  43. Roy EA, Kalbfleisch L, Elliott D (1994) Kinematic analyses of manual asymmetries in visual aiming movements. Brain Cogn 24(2):289–295PubMedCrossRefGoogle Scholar
  44. Schaefer SY, Haaland KY, Sainburg RL (2009) Hemispheric specialization and functional impact of ipsilesional deficits in movement coordination and accuracy. Neuropsychologia 47(13):2953–2966PubMedPubMedCentralCrossRefGoogle Scholar
  45. Shabbott BA, Sainburg RL (2008) Differentiating between two models of motor lateralization. J Neurophysiol 100(2):565–575PubMedPubMedCentralCrossRefGoogle Scholar
  46. Stone KD, Bryant DC, Gonzalez CLR (2013) Hand use for grasping in a bimanual task: evidence for different roles? Exp Brain Res 224(3):455–467CrossRefGoogle Scholar
  47. Tomlinson T, Sainburg R (2012) Dynamic dominance persists during unsupported reaching. J Mot Behav 44(1):13–25PubMedCrossRefGoogle Scholar
  48. Tretriluxana J, Gordon J, Winstein CJ (2008) Manual asymmetries in grasp pre-shaping and transport–grasp coordination. Exp Brain Res 188(2):305–315PubMedCrossRefGoogle Scholar
  49. Veazie PJ (2006) When to combine hypotheses and adjust for multiple tests. Health Serv Res 41(3p1):804–818PubMedPubMedCentralCrossRefGoogle Scholar
  50. Wang J, Sainburg RL (2007) The dominant and nondominant arms are specialized for stabilizing different features of task performance. Exp Brain Res 178(4):565–570PubMedCrossRefGoogle Scholar
  51. Westwood DA, Goodale M (2003) Perceptual illusion and the real-time control of action. Spat Vis 16(3):243–254PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The Brain in Action Laboratory, Department of KinesiologyUniversity of LethbridgeLethbridgeCanada
  2. 2.Department of PsychologyUniversity of British ColumbiaVancouverCanada

Personalised recommendations