Kinematics and postural muscular activity during continuous oscillating platform movement in children and adolescents

Abstract

The aims of this study were to (1) characterize anticipatory and reactive postural strategies in typically developing (TD) children and adolescents; (2) determine if TD youth shift from reactive to anticipatory mechanisms based on knowledge of platform movement; and (3) determine whether TD youth further modify postural strategies when additional information about the perturbation is provided. Sixteen typically developing youth aged 7–17 years stood with eyes open on a movable platform that progressively translated anteroposteriorly (20 cm peak-to-peak) through four speeds (0.1, 0.25, 0.5, and 0.61 Hz). Participants performed two trials each of experimenter-triggered and self-triggered perturbations. Postural muscle activity (1000 Hz) of the tibialis anterior, gastrocnemius, quadriceps and hamstrings and 3D whole body kinematics (100 Hz) were recorded. The Anchoring Index and marker-pair trajectory cross-correlations were calculated as indications of body stabilization. The number of steps taken to regain balance/avoid falling were counted. Transition states and steady states were analyzed separately. Generally, the higher frequencies resulted in more steps being taken, lower correlations coupled with greater temporal lags between marker trajectories, and postural muscle activity similar to older adults. The provision of self-triggered perturbations allowed participants to make the appropriate changes to their balance by use of anticipatory postural control mechanisms.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Adkin AL, Frank JS, Carpenter MG, Peysar GW (2000) Postural control is scaled to level of postural threat. Gait Posture 12(2):87–93. https://doi.org/10.1016/S0966-6362(00)00057-6

    CAS  Article  PubMed  Google Scholar 

  2. Amblard B, Assaiante C, Fabre J-C et al (1997) Voluntary head stabilization in space during trunk movements in weightlessness. Exp Brain Res 114:214–225

    CAS  Article  PubMed  Google Scholar 

  3. Amblard B, Assaiante C, Vaugoyeau M, Baroni G, Ferrigno G, Pedotti A (2001) Voluntary head stabilisation in space during oscillatory trunk movements in the frontal plane performed before, during and after a prolonged period of weightlessness. Exp Brain Res 137(2):170–179. https://doi.org/10.1007/s002210000621

    CAS  Article  PubMed  Google Scholar 

  4. Assaiante C (1998) Development of locomotor balance control in healthy children. Neurosci Biobehav Rev 22(4):527–532

    CAS  Article  PubMed  Google Scholar 

  5. Assaiante C, Amblard B (1995) An ontogenetic model for the sensorimotor organization of balance control in humans. Hum Mov Sci 14(1):13–43. https://doi.org/10.1016/0167-9457(94)00048-J

    Article  Google Scholar 

  6. Assaiante C, Mallau S, Viel S, Jover M, Schmitz C (2005) Development of postural control in healthy children: a functional approach. Neural Plast 12(2–3):109–118. https://doi.org/10.1155/NP.2005.109

    Article  PubMed  PubMed Central  Google Scholar 

  7. Buchanan JJ, Horak FB (1999) Emergence of postural patterns as a function of vision and translation frequency. J Neurophysiol 81:2325–2339

    CAS  Article  PubMed  Google Scholar 

  8. Bugnariu N, Sveistrup H (2006) Age-related changes in postural responses to externally- and self-triggered continuous perturbations. Arch Gerontol Geriatr 42(1):73–89. https://doi.org/10.1016/j.archger.2005.05.003

    Article  PubMed  Google Scholar 

  9. Burtner PA, Woollacott MH, Craft GL, Roncesvalles MN (2007) The capacity to adapt to changing balance threats: a comparison of children with cerebral palsy and typically developing children. Dev Neurorehabil 10(3):249–260. https://doi.org/10.1080/17518420701303066

    CAS  Article  PubMed  Google Scholar 

  10. Carpenter MG, Frank JS, Adkin AL, Paton A, Allum JHJ (2004) Influence of postural anxiety on postural reactions to multi-directional surface rotations. J Neurophysiol 92(6):3255–3265. https://doi.org/10.1152/jn.01139.2003

    CAS  Article  PubMed  Google Scholar 

  11. Corna S, Tarantola J, Nardone A, Giordano A, Schieppati M (1999) Standing on a continuously moving platform: is body inertia counteracted or exploited? Exp Brain Res 124(3):331–341. https://doi.org/10.1007/s002210050630

    CAS  Article  PubMed  Google Scholar 

  12. De Nunzio AM, Schieppati M (2007) Time to reconfigure balancing behaviour in man: changing visual condition while riding a continuously moving platform. Exp Brain Res 178(1):18–36. https://doi.org/10.1007/s00221-006-0708-z

    Article  PubMed  Google Scholar 

  13. Dietz V, Trippel M, Ibrahim IK, Berger W (1993) Human stance on a sinusoidally translating platform: balance control by feedforward and feedback mechanisms. Exp Brain Res 93(2):352–362. https://doi.org/10.1007/BF00228405

    CAS  Article  PubMed  Google Scholar 

  14. Fujiwara K, Kiyota T, Mammadova A, Yaguchi C (2011) Age-related changes and sex differences in postural control adaptability in children during periodic floor oscillation with eyes closed. J Physiol Anthropol 30(5):187–194. https://doi.org/10.2114/jpa2.30.187

    Article  PubMed  Google Scholar 

  15. Hansen PD, Wollacott M, Debu B (1988) Postural responses to changing task conditions. Exp Brain Res 73:627–636

    CAS  Article  PubMed  Google Scholar 

  16. Horak FB, Nashner LM (1986) Central programming of postural movements: adaptation to altered support-surface configurations. J Neurophysiol 55(6):1369–1381. https://doi.org/10.1152/jn.1986.55.6.1369

    CAS  Article  PubMed  Google Scholar 

  17. Kennedy A, Bugnariu N, Guevel A, Sveistrup H (2013) Adaptation of the feedforward postural response to repeated continuous postural perturbations. Neurosci Med 4(1):45–49. https://doi.org/10.4236/nm.2013.41007

    Article  Google Scholar 

  18. Laessoe U, Voigt M (2008) Anticipatory postural control strategies related to predictive perturbations. Gait Posture 28(1):62–68. https://doi.org/10.1016/j.gaitpost.2007.10.001

    Article  PubMed  Google Scholar 

  19. McCollum G, Leen TK (1989) Form and exploration of mechanical stability limits in erect stance. J Mot Behav 21(3):225–244

    CAS  Article  PubMed  Google Scholar 

  20. Mcllroy WE, Maki BE (1993) Task constraints on foot movement and the incidence of compensatory stepping following perturbation of upright stance. Brain Res 616:30–38

    Article  Google Scholar 

  21. Mcllroy WE, Maki BE (1996) Age-related changes in compensatory stepping in response to unpredictable perturbations. J Gerontol 51(6):M289–M296

    Article  Google Scholar 

  22. Mesure S, Azulay J, Pouget J, Amblard B (1999) Strategies of segmental stabilization during gait in Parkinson’s disease. Exp Brain Res 129:573–581

    CAS  Article  PubMed  Google Scholar 

  23. Pai Y, Patton J (1997) Center of mass velocity-position predictions for balance control. J Niomech 30(4):347–354

    CAS  Article  Google Scholar 

  24. Pai Y, Rogers MW, Patton J, Cain TD, Hanke TA (1998) Static versus dynamic predictions of protective stepping following waist—pull perturbations in young and older adults. J Biomech 31:1111–1118

    CAS  Article  PubMed  Google Scholar 

  25. Pai Y, Wening JD, Runtz EF, Iqbal K, Pavol MJ (2003) Role of feedforward control of movement stability in reducing slip-related balance loss and falls among older adults. J Neurophysiol 90:755–762

    Article  PubMed  Google Scholar 

  26. Pavol MJ, Pai YC (2002) Feedforward adaptations are used to compensate for a potential loss of balance. Exp Brain Res 145(4):528–538. https://doi.org/10.1007/s00221-002-1143-4

    Article  PubMed  Google Scholar 

  27. Perrin P, Schneider D, Deviterne D, Perrot C (1998) Training improves the adaptation to changing visual conditions in maintaining human posture control in a test of sinusoidal oscillation of the support. Neurosci Lett 245:155–158

    CAS  Article  PubMed  Google Scholar 

  28. Rankin JK, Woollacott MH, Shumway-Cook A, Brown LA (2000) Cognitive influence on postural stability: a neuromuscular analysis in young and older adults. J Gerontol A Biol Sci Med Sci 55(3):M112–M119. https://doi.org/10.1093/gerona/55.3.M112

    CAS  Article  PubMed  Google Scholar 

  29. Roncesvalles MNC, Woollacott MH, Jensen JL (2000) The development of compensatory stepping skills in children. J Mot Behav 32(1):100–111

    CAS  Article  PubMed  Google Scholar 

  30. Santos MJ, Kanekar N, Aruin AS (2010) The role of anticipatory postural adjustments in compensatory control of posture: 2. Biomechanical analysis. J Electromyogr Kinesiol 20(3):398–405. https://doi.org/10.1016/j.jelekin.2010.01.002

    Article  PubMed  PubMed Central  Google Scholar 

  31. Schmid M, Bottaro A, Sozzi S, Schieppati M (2011) Adaptation to continuous perturbation of balance: progressive reduction of postural muscle activity with invariant or increasing oscillations of the center of mass depending on perturbation frequency and vision conditions. Hum Mov Sci 30(2):262–278. https://doi.org/10.1016/j.humov.2011.02.002

    Article  PubMed  Google Scholar 

  32. Shumway-Cook A, Woollacott M (2000) Attentional demands and postural control: the effect of sensory context. J Gerontol A Biol Sci Med Sci 55(1):M10–M16. https://doi.org/10.1093/gerona/55.1.M10

    CAS  Article  PubMed  Google Scholar 

  33. Van Ooteghem K, Frank JS, Allard F, Buchanan JJ, Oates AR, Horak FB (2008) Compensatory postural adaptations during continuous, variable amplitude perturbations reveal generalized rather than sequence-specific learning. Exp Brain Res 187(4):603–611. https://doi.org/10.1007/s00221-008-1329-5

    Article  PubMed  PubMed Central  Google Scholar 

  34. Woollacott M, Shumway-Cook A (1990) Changes in posture control across the life span—a systems approach. Phys Ther 70(12):799–807

    CAS  Article  PubMed  Google Scholar 

  35. Woollacott M, Shumway-Cook A (2002) Attention and the control of posture and gait: a review of an emerging area of research. Gait Posture 16(1):1–14. https://doi.org/10.1016/S0966-6362(01)00156-4

    Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Heidi Sveistrup.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mills, R.S., Sveistrup, H. Kinematics and postural muscular activity during continuous oscillating platform movement in children and adolescents. Exp Brain Res 236, 1479–1490 (2018). https://doi.org/10.1007/s00221-018-5228-0

Download citation

Keywords

  • Postural control
  • Anchoring Index
  • Balance mechanisms
  • Oscillation