Advertisement

Experimental Brain Research

, Volume 236, Issue 4, pp 1105–1115 | Cite as

Early manifestation of arm–leg coordination during stepping on a surface in human neonates

  • Valentina La Scaleia
  • Y. Ivanenko
  • A. Fabiano
  • F. Sylos-Labini
  • G. Cappellini
  • S. Picone
  • P. Paolillo
  • A. Di Paolo
  • F. Lacquaniti
Research Article
  • 147 Downloads

Abstract

The accomplishment of mature locomotor movements relies upon the integrated coordination of the lower and upper limbs and the trunk. Human adults normally swing their arms and a quadrupedal limb coordination persists during bipedal walking despite a strong corticospinal control of the upper extremities that allows to uncouple this connection during voluntary activities. Here we investigated arm–leg coordination during stepping responses on a surface in human neonates. In eight neonates, we found the overt presence of alternating arm–leg oscillations, the arms moving up and down in alternation with ipsilateral lower limb movements. These neonates moved the diagonal limbs together, and the peak of the arm-to-trunk angle (i.e., maximum vertical excursion of the arm) occurred around the end of the ipsilateral stance phase, as it occurs during typical adult walking. Although episodes of arm–leg coordination were sporadic in our sample of neonates, their presence provides significant evidence for a neural coupling between the upper and lower limbs during early ontogenesis of locomotion in humans.

Keywords

Neonatal stepping Arm–leg coordination Early development Human locomotion 

Notes

Acknowledgements

We thank Marika Cicchese, Nadia Dominici, Carlo Giannini, Vito Mondì and Tiziana Silei for help with some of the experiments. This work was supported by the Italian Ministry of Health (IRCCS Ricerca corrente), Italian Space Agency (contract no. I/006/06/0), Italian University Ministry (PRIN Grant 2015HFWRYY_002), Lazio Region (INNOVA.1 FILAS—RU 2014_1033), and Horizon 2020 Robotics Program (ICT-23-2014 under Grant Agreement 644727-CogIMon).

Supplementary material

221_2018_5201_MOESM1_ESM.avi (3 mb)
Supplementary material 1 (AVI 3065 KB)

References

  1. Adolph KE, Vereijken B, Denny MA (1998) Learning to crawl. Child Dev 69:1299–1312.  https://doi.org/10.1111/j.1467-8624.1998.tb06213.x CrossRefPubMedGoogle Scholar
  2. Barbu-Roth M, Anderson DI, Streeter RJ et al (2015) Why does infant stepping disappear and can it be stimulated by optic flow? Child Dev 86:441–455.  https://doi.org/10.1111/cdev.12305 CrossRefPubMedGoogle Scholar
  3. Barthelemy D, Nielsen JB (2010) Corticospinal contribution to arm muscle activity during human walking: cortical involvement in rhythmic arm movement. J Physiol 588:967–979.  https://doi.org/10.1113/jphysiol.2009.185520 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Berens P (2009) CircStat: a MATLAB toolbox for circular statistics. J Stat Softw 31Google Scholar
  5. Burnett CN, Johnson EW (1971) Development of gait in childhood: Part II. Dev Med Child Neurol 13:207–215.  https://doi.org/10.1111/j.1469-8749.1971.tb03246.x CrossRefPubMedGoogle Scholar
  6. de Vries JIP, Visser GHA, Prechtl HFR (1982) The emergence of fetal behaviour. I. Qualitative aspects. Early Human Dev 7:301–322.  https://doi.org/10.1016/0378-3782(82)90033-0 CrossRefGoogle Scholar
  7. Dietz V (2002) Do human bipeds use quadrupedal coordination? Trends Neurosci 25:462–467CrossRefPubMedGoogle Scholar
  8. Dietz V, Michel J (2009) Human Bipeds use quadrupedal coordination during locomotion. Ann N Y Acad Sci 1164:97–103.  https://doi.org/10.1111/j.1749-6632.2008.03710.x CrossRefPubMedGoogle Scholar
  9. Domellöf E, Rönnqvist L, Hopkins B (2007) Functional asymmetries in the stepping response of the human newborn: a kinematic approach. Exp Brain Res 177:324–335.  https://doi.org/10.1007/s00221-006-0675-4 CrossRefPubMedGoogle Scholar
  10. Dominici N, Ivanenko YP, Lacquaniti F (2007) Control of foot trajectory in walking toddlers: adaptation to load changes. J Neurophysiol 97:2790–2801.  https://doi.org/10.1152/jn.00262.2006 CrossRefPubMedGoogle Scholar
  11. Dominici N, Ivanenko YP, Cappellini G et al (2011) Locomotor primitives in newborn babies and their development. Science 334:997–999.  https://doi.org/10.1126/science.1210617 CrossRefPubMedGoogle Scholar
  12. Donker SF, Beek PJ, Wagenaar RC, Mulder T (2001) Coordination between arm and leg movements during locomotion. J Mot Behav 33:86–102.  https://doi.org/10.1080/00222890109601905 CrossRefPubMedGoogle Scholar
  13. Eyre JA, Miller S, Clowry GJ et al (2000) Functional corticospinal projections are established prenatally in the human foetus permitting involvement in the development of spinal motor centres. Brain 123:51–64.  https://doi.org/10.1093/brain/123.1.51 CrossRefPubMedGoogle Scholar
  14. Forssberg H (1985) Ontogeny of human locomotor control. I. Infant stepping, supported locomotion and transition to independent locomotion. Exp Brain Res 57:480–493CrossRefPubMedGoogle Scholar
  15. Freedland RL, Bertenthal BI (1994) Developmental changes in interlimb coordination: transition to hands-and-knees crawling. Psychol Sci 5:26–32.  https://doi.org/10.1111/j.1467-9280.1994.tb00609.x CrossRefGoogle Scholar
  16. Frigon A (2017) The neural control of interlimb coordination during mammalian locomotion. J Neurophysiol 117:2224–2241.  https://doi.org/10.1152/jn.00978.2016 CrossRefPubMedGoogle Scholar
  17. Gerasimenko Y, Gorodnichev R, Machueva E et al (2010) Novel and direct access to the human locomotor spinal circuitry. J Neurosci 30:3700–3708CrossRefPubMedPubMedCentralGoogle Scholar
  18. Grillner S (2006) Biological pattern generation: the cellular and computational logic of networks in motion. Neuron 52:751–766.  https://doi.org/10.1016/j.neuron.2006.11.008 CrossRefPubMedGoogle Scholar
  19. Grillner S (2011) Human locomotor circuits conform. Science 334:912–913.  https://doi.org/10.1126/science.1214778 CrossRefPubMedGoogle Scholar
  20. Hadders-Algra M, Van Eykern LA, Klip-Van den Nieuwendijk AW, Prechtl HF (1992) Developmental course of general movements in early infancy. II. EMG correlates. Early Hum Dev 28:231–251CrossRefPubMedGoogle Scholar
  21. Hadders-Algra M, Nakae Y, Van Eykern LA et al (1993) The effect of behavioural state on general movements in healthy full-term newborns. A polymyographic study. Early Hum Dev 35:63–79CrossRefPubMedGoogle Scholar
  22. Hofsten C, Ronnqvist L (1993) The structuring of neonatal arm movements. Child Dev 64:1046–1057.  https://doi.org/10.1111/j.1467-8624.1993.tb04187.x CrossRefGoogle Scholar
  23. Ivanenko YP, Dominici N, Cappellini G et al (2013) Changes in the spinal segmental motor output for stepping during development from infant to adult. J Neurosci 33:3025–3036.  https://doi.org/10.1523/JNEUROSCI.2722-12.2013 CrossRefPubMedGoogle Scholar
  24. Jackson KM, Joseph J, Wyard SJ (1983) The upper limbs during human walking. Part I: Sagittal movement. Electromyogr Clin Neurophysiol 23:425–434PubMedGoogle Scholar
  25. Juvin L, Le Gal J-P, Simmers J, Morin D (2012) Cervicolumbar coordination in mammalian quadrupedal locomotion: role of spinal thoracic circuitry and limb sensory inputs. J Neurosci 32:953–965.  https://doi.org/10.1523/JNEUROSCI.4640-11.2012 CrossRefPubMedGoogle Scholar
  26. Kanemaru N, Watanabe H, Taga G (2012) Increasing selectivity of interlimb coordination during spontaneous movements in 2- to 4-month-old infants. Exp Brain Res 218:49–61.  https://doi.org/10.1007/s00221-012-3001-3 CrossRefPubMedGoogle Scholar
  27. Kato M, Hirashima M, Oohashi H et al (2014) Decomposition of spontaneous movements of infants as combinations of limb synergies. Exp Brain Res.  https://doi.org/10.1007/s00221-014-3972-3 Google Scholar
  28. Kawai M, Savelsbergh GJP, Wimmers RH (1999) Newborns spontaneous arm movements are influenced by the environment. Early Human Dev 54:15–27.  https://doi.org/10.1016/S0378-3782(98)00081-4 CrossRefGoogle Scholar
  29. Kuczynski V, Telonio A, Thibaudier Y et al (2017) Lack of adaptation during prolonged split-belt locomotion in the intact and spinal cat. J Physiol.  https://doi.org/10.1113/JP274518 PubMedGoogle Scholar
  30. La Scaleia V, Ivanenko YP, Zelik KE, Lacquaniti F (2014) Spinal motor outputs during step-to-step transitions of diverse human gaits. Front Hum Neurosci 8:305.  https://doi.org/10.3389/fnhum.2014.00305 PubMedPubMedCentralGoogle Scholar
  31. Lacquaniti F, Ivanenko YP, Zago M (2012) Development of human locomotion. Curr Opin Neurobiol 22:822–828.  https://doi.org/10.1016/j.conb.2012.03.012 CrossRefPubMedGoogle Scholar
  32. Lacquaniti F, Ivanenko YP, d’Avella A et al (2013) Evolutionary and developmental modules. Front Comput Neurosci 7:61.  https://doi.org/10.3389/fncom.2013.00061 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Ledebt A (2000) Changes in arm posture during the early acquisition of walking. Infant Behav Dev 23:79–89.  https://doi.org/10.1016/S0163-6383(00)00027-8 CrossRefGoogle Scholar
  34. Lüchinger AB, Hadders-Algra M, van Kan CM, de Vries JIP (2008) Fetal onset of general movements. Pediatr Res 63:191–195.  https://doi.org/10.1203/PDR.0b013e31815ed03e CrossRefPubMedGoogle Scholar
  35. MacLellan MJ, Ivanenko YP, Cappellini G et al (2012) Features of hand–foot crawling behavior in human adults. J Neurophysiol 107:114–125.  https://doi.org/10.1152/jn.00693.2011 CrossRefPubMedGoogle Scholar
  36. MacLellan MJ, Catavitello G, Ivanenko YP, Lacquaniti F (2017) Planar covariance of upper and lower limb elevation angles during hand–foot crawling in healthy young adults. Exp Brain Res.  https://doi.org/10.1007/s00221-017-5060-y Google Scholar
  37. Martin JH (2005) The corticospinal system: from development to motor control. Neuroscientist 11:161–173.  https://doi.org/10.1177/1073858404270843 CrossRefPubMedGoogle Scholar
  38. Massaad F, Levin O, Meyns P et al (2014) Arm sway holds sway: locomotor-like modulation of leg reflexes when arms swing in alternation. Neuroscience 258:34–46.  https://doi.org/10.1016/j.neuroscience.2013.10.007 CrossRefPubMedGoogle Scholar
  39. McGraw MB (1939) Swimming behavior of the human infant. J Pediatr 15:485–490.  https://doi.org/10.1016/S0022-3476(39)80003-8 CrossRefGoogle Scholar
  40. McGraw MB (1940) Neuromuscular development of the human infant as exemplified in the achievement of erect locomotion. J Pediatr 17:747–771CrossRefGoogle Scholar
  41. Meyns P, Bruijn SM, Duysens J (2013) The how and why of arm swing during human walking. Gait Posture 38:555–562.  https://doi.org/10.1016/j.gaitpost.2013.02.006 CrossRefPubMedGoogle Scholar
  42. Meyns P, Molenaers G, Desloovere K, Duysens J (2014) Interlimb coordination during forward walking is largely preserved in backward walking in children with cerebral palsy. Clin Neurophysiol 125:552–561.  https://doi.org/10.1016/j.clinph.2013.08.022 CrossRefPubMedGoogle Scholar
  43. Murray MP, Mollinger LA, Gardner GM, Sepic SB (1984) Kinematic and EMG patterns during slow, free, and fast walking. J Orthop Res 2:272–280.  https://doi.org/10.1002/jor.1100020309 CrossRefPubMedGoogle Scholar
  44. Nathan PW, Smith M, Deacon P (1996) Vestibulospinal, reticulospinal and descending propriospinal nerve fibres in man. Brain 119(Pt 6):1809–1833CrossRefPubMedGoogle Scholar
  45. Niedźwiedzki G, Szrek P, Narkiewicz K et al (2010) Tetrapod trackways from the early Middle Devonian period of Poland. Nature 463:43–48.  https://doi.org/10.1038/nature08623 CrossRefPubMedGoogle Scholar
  46. Niemitz C (2002) Kinematics and ontogeny of locomotion in monkeys and human babies. Zeitschrift für Morphologie Anthropologie 83:383–400.  https://doi.org/10.2307/25757620 Google Scholar
  47. Patrick SK, Noah JA, Yang JF (2009) Interlimb coordination in human crawling reveals similarities in development and neural control with quadrupeds. J Neurophysiol 101:603–613.  https://doi.org/10.1152/jn.91125.2008 CrossRefPubMedGoogle Scholar
  48. Patrick SK, Noah JA, Yang JF (2012) Developmental constraints of quadrupedal coordination across crawling styles in human infants. J Neurophysiol 107:3050–3061.  https://doi.org/10.1152/jn.00029.2012 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Pavlidis E, Cantalupo G, Cattani L et al (2016) Neonatal seizure automatism and human inborn pattern of quadrupedal locomotion. Gait Posture 49:232–234.  https://doi.org/10.1016/j.gaitpost.2016.07.015 CrossRefPubMedGoogle Scholar
  50. Pontzer H, Holloway JH, Raichlen DA, Lieberman DE (2009) Control and function of arm swing in human walking and running. J Exp Biol 212:523–534.  https://doi.org/10.1242/jeb.024927 CrossRefPubMedGoogle Scholar
  51. Robinson SR, Kleven GA, Brumley MR (2008) Prenatal development of interlimb motor learning in the rat fetus. Infancy 13:204–228.  https://doi.org/10.1080/15250000802004288 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Ruder L, Takeoka A, Arber S (2016) Long-distance descending spinal neurons ensure quadrupedal locomotor stability. Neuron 92:1063–1078.  https://doi.org/10.1016/j.neuron.2016.10.032 CrossRefPubMedGoogle Scholar
  53. Siekerman K, Barbu-Roth M, Anderson DI et al (2015) Treadmill stimulation improves newborn stepping. Dev Psychobiol 57:247–254.  https://doi.org/10.1002/dev.21270 CrossRefPubMedGoogle Scholar
  54. Solopova IA, Selionov VA, Zhvansky DS et al (2016) Human cervical spinal cord circuitry activated by tonic input can generate rhythmic arm movements. J Neurophysiol 115:1018–1030.  https://doi.org/10.1152/jn.00897.2015 CrossRefPubMedGoogle Scholar
  55. Sparrow WA (1989) Creeping patterns of human adults and infants. Am J Phys Anthropol 78:387–401.  https://doi.org/10.1002/ajpa.1330780307 CrossRefPubMedGoogle Scholar
  56. Sutherland DH, Olshen R, Cooper L, Woo SL (1980) The development of mature gait. J Bone Joint Surg Am 62:336–353CrossRefPubMedGoogle Scholar
  57. Sylos-Labini F, Ivanenko YP, MacLellan MJ et al (2014) Locomotor-like leg movements evoked by rhythmic arm movements in humans. PLoS One 9:e90775.  https://doi.org/10.1371/journal.pone.0090775 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Sylos-Labini F, Magnani S, Cappellini G et al (2017) Foot placement characteristics and plantar pressure distribution patterns during stepping on ground in neonates. Front Physiol 8:784.  https://doi.org/10.3389/fphys.2017.00784 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Teulier C, Sansom JK, Muraszko K, Ulrich BD (2012) Longitudinal changes in muscle activity during infants’ treadmill stepping. J Neurophysiol 108:853–862.  https://doi.org/10.1152/jn.01037.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Thelen E, Fisher DM (1982) Newborn stepping: an explanation for a” disappearing” reflex. Dev Psychol 18:760CrossRefGoogle Scholar
  61. Thelen E, Fisher DM, Ridley-Johnson R, Griffin NJ (1982) Effects of body build and arousal on newborn infant stepping. Dev Psychobiol 15:447–453.  https://doi.org/10.1002/dev.420150506 CrossRefPubMedGoogle Scholar
  62. van der Meer A, van der Weel F, Lee D (1995) The functional significance of arm movements in neonates. Science 267:693–695.  https://doi.org/10.1126/science.7839147 CrossRefPubMedGoogle Scholar
  63. Varendi H, Porter RH (2001) Breast odour as the only maternal stimulus elicits crawling towards the odour source. Acta Paediatr 90:372–375CrossRefPubMedGoogle Scholar
  64. Vinay L, Brocard F, Clarac F et al (2002) Development of posture and locomotion: an interplay of endogenously generated activities and neurotrophic actions by descending pathways. Brain Res Rev 40:118–129.  https://doi.org/10.1016/S0165-0173(02)00195-9 CrossRefPubMedGoogle Scholar
  65. Wagenaar RC, van Emmerik REA (1994) Dynamics of pathological gait. Hum Mov Sci 13:441–471.  https://doi.org/10.1016/0167-9457(94)90049-3 CrossRefGoogle Scholar
  66. Wannier T, Bastiaanse C, Colombo G, Dietz V (2001) Arm to leg coordination in humans during walking, creeping and swimming activities. Exp Brain Res 141:375–379.  https://doi.org/10.1007/s002210100875 CrossRefPubMedGoogle Scholar
  67. Webb D, Tuttle RH, Baksh M (1994) Pendular activity of human upper limbs during slow and normal walking. Am J Phys Anthropol 93:477–489.  https://doi.org/10.1002/ajpa.1330930407 CrossRefPubMedGoogle Scholar
  68. Yang JF, Stephens MJ, Vishram R (1998) Infant stepping: a method to study the sensory control of human walking. J Physiol 507:927–937.  https://doi.org/10.1111/j.1469-7793.1998.927bs.x CrossRefPubMedPubMedCentralGoogle Scholar
  69. Yang JF, Mitton M, Musselman KE et al (2015) Characteristics of the developing human locomotor system: similarities to other mammals. Dev Psychobiol 57:397–408.  https://doi.org/10.1002/dev.21289 CrossRefPubMedGoogle Scholar
  70. Zampagni ML, Brigadoi S, Schena F et al (2011) Idiosyncratic control of the center of mass in expert climbers: control of the center of mass in expert climbers. Scand J Med Sci Sports 21:688–699.  https://doi.org/10.1111/j.1600-0838.2010.01098.x CrossRefPubMedGoogle Scholar
  71. Zehr EP, Duysens J (2004) Regulation of arm and leg movement during human locomotion. Neuroscientist 10:347–361.  https://doi.org/10.1177/1073858404264680 CrossRefPubMedGoogle Scholar
  72. Zehr EP, Barss TS, Dragert K et al (2016) Neuromechanical interactions between the limbs during human locomotion: an evolutionary perspective with translation to rehabilitation. Exp Brain Res 234:3059–3081.  https://doi.org/10.1007/s00221-016-4715-4 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Zelazo PR, Zelazo NA, Kolb S (1972) “Walking” in the newborn. Science 176:314–315CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Valentina La Scaleia
    • 1
  • Y. Ivanenko
    • 1
  • A. Fabiano
    • 2
  • F. Sylos-Labini
    • 1
    • 3
  • G. Cappellini
    • 1
    • 3
  • S. Picone
    • 2
  • P. Paolillo
    • 2
  • A. Di Paolo
    • 4
    • 5
  • F. Lacquaniti
    • 1
    • 3
    • 5
  1. 1.Laboratory of Neuromotor Physiology of the IRCCS Santa Lucia FoundationRomeItaly
  2. 2.Neonatology and Neonatal Intensive Care UnitCasilino HospitalRomeItaly
  3. 3.Center of Space BioMedicineUniversity of Rome Tor VergataRomeItaly
  4. 4.Neonatology and Neonatal Intensive Care UnitOspedale San GiovanniRomeItaly
  5. 5.Department of Systems MedicineUniversity of Rome Tor VergataRomeItaly

Personalised recommendations