Skip to main content

Three-dimensional binocular eye–hand coordination in normal vision and with simulated visual impairment

Abstract

Sensorimotor coupling in healthy humans is demonstrated by the higher accuracy of visually tracking intrinsically—rather than extrinsically—generated hand movements in the fronto-parallel plane. It is unknown whether this coupling also facilitates vergence eye movements for tracking objects in depth, or can overcome symmetric or asymmetric binocular visual impairments. Human observers were therefore asked to track with their gaze a target moving horizontally or in depth. The movement of the target was either directly controlled by the observer’s hand or followed hand movements executed by the observer in a previous trial. Visual impairments were simulated by blurring stimuli independently in each eye. Accuracy was higher for self-generated movements in all conditions, demonstrating that motor signals are employed by the oculomotor system to improve the accuracy of vergence as well as horizontal eye movements. Asymmetric monocular blur affected horizontal tracking less than symmetric binocular blur, but impaired tracking in depth as much as binocular blur. There was a critical blur level up to which pursuit and vergence eye movements maintained tracking accuracy independent of blur level. Hand–eye coordination may therefore help compensate for functional deficits associated with eye disease and may be employed to augment visual impairment rehabilitation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  • Akao T, Kurkin SA, Fukushima J, Fukushima K (2005) Visual and vergence eye movement-related responses of pursuit neurons in the caudal frontal eye fields to motion-in-depth stimuli. Exp Brain Res 164(1):92–108

    Article  PubMed  Google Scholar 

  • Albano JE, Marrero JA (1995) Binocular interactions in rapid saccadic adaptation. Vis Res 35(23):3439–3450

    CAS  Article  PubMed  Google Scholar 

  • Artal P, Chen L, Fernández EJ, Singer B, Manzanera S, Williams DR (2004) Neural compensation for the eye’s optical aberrations. J Vis 4(4):4–4

    Article  Google Scholar 

  • Atkinson J, Braddick O, Moar K (1977) Development of contrast sensitivity over the first 3 months of life in the human infant. Vis Res 17(9):1037–1044

    CAS  Article  PubMed  Google Scholar 

  • Banks M, Salapatek P (1978) Acuity and contrast sensitivity in 1-, 2-, and 3-month-old human infants. Investig Ophthalmol Vis Sci 17(4):361–365

    CAS  Google Scholar 

  • Bex PJ, Makous W (2002) Spatial frequency, phase, and the contrast of natural images. J Opt Soc Am A 19(6):1096–1106

    Article  Google Scholar 

  • Bock O (1987) Coordination of arm and eye movements in tracking of sinusoidally moving targets. Behav Brain Res 24(2):93–100

    CAS  Article  PubMed  Google Scholar 

  • Bossi M, Tailor VK, Anderson EJ, Bex PJ, Greenwood JA, Dahlmann-Noor A, Dakin SC (2017) Binocular therapy for childhood amblyopia improves vision without breaking interocular suppression. Investig Ophthalmol Vis Sci 58(7):3031

    Article  Google Scholar 

  • Brainard DH (1997) The psychophysics toolbox. Spat Vis 10:433–436

    CAS  Article  PubMed  Google Scholar 

  • Brown LE, Kroliczak G, Demonet JF, Goodale MA (2008) A hand in blindsight: hand placement near target improves size perception in the blind visual field. Neuropsychologia 46(3):786–802

    Article  PubMed  Google Scholar 

  • Brown MA, Stuerzlinger W, Filho EJM (2014) The performance of un-instrumented in-air pointing. In: Proceedings of graphics interface 2014, GI ’14. Canadian Information Processing Society, Toronto, Ont., Canada, pp 59–66

  • Chen J, Valsecchi M, Gegenfurtner KR (2016) LRP predicts smooth pursuit eye movement onset during the ocular tracking of self-generated movements. J Neurophysiol

  • Cornelissen FW, Peters EM, Palmer J (2002) The eyelink toolbox: eye tracking with matlab and the psychophysics toolbox. Behav Res Methods Instrum Comput 34(4):613–617

    Article  PubMed  Google Scholar 

  • Coubard OA (2013) Saccade and vergence eye movements: a review of motor and premotor commands. Eur J Neurosci 38(10):3384–3397

    Article  PubMed  Google Scholar 

  • Craighero L, Fadiga L, Rizzolatti G, Umiltà C (1999) Action for perception: a motor-visual attentional effect. J Exp Psychol Hum Percept Perform 25(6):1673

    CAS  Article  PubMed  Google Scholar 

  • de Belsunce S, Sireteanu R (1991) The time course of interocular suppression in normal and amblyopic subjects. Investig Ophthalmol Vis Sci 32(9):2645

    Google Scholar 

  • Di Pellegrino G, Frassinetti F (2000) Direct evidence from parietal extinction of enhancement of visual attention near a visible hand. Curr Biol 10(22):1475–1477

    Article  PubMed  Google Scholar 

  • Ellis SR, Breant F, Manges B, Jacoby R, Adelstein BD (1997) Factors influencing operator interaction with virtual objects viewed via head-mounted see-through displays: viewing conditions and rendering latency. In: Proceedings of IEEE 1997 annual international symposium on virtual reality, pp 138–145

  • Fahle M (1982) Binocular rivalry: suppression depends on orientation and spatial frequency. Vis Res 22(7):787–800

    CAS  Article  PubMed  Google Scholar 

  • Fan D, Cheung E, Lai R, Kwok A, Lam D (2004) Myopia progression among preschool chinese children in hong kong. Ann Acad Med Singapore 33(1):39–43

    CAS  PubMed  Google Scholar 

  • Fielder AR, Moseley MJ (1996) Does stereopsis matter in humans? Eye 10(2):233–238

    Article  PubMed  Google Scholar 

  • Fincham E, Walton J (1957) The reciprocal actions of accommodation and convergence. J Physiol 137(3):488

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Fisher RA (1915) Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population. Biometrika 10(4):507–521

    Google Scholar 

  • Fukushima K, Yamanobe T, Shinmei Y, Fukushima J, Kurkin S, Peterson BW (2002) Coding of smooth eye movements in three-dimensional space by frontal cortex. Nature 419(6903):157–162

    CAS  Article  PubMed  Google Scholar 

  • Gamlin PD, Yoon K (2000) An area for vergence eye movement in primate frontal cortex. Nature 407(6807):1003–1007

    CAS  Article  PubMed  Google Scholar 

  • Gamlin PDR (2002) Neural mechanisms for the control of vergence eye movements. Ann N Y Acad Sci 956(1):264–272

    Article  PubMed  Google Scholar 

  • Gamlin PDR, Yoon K, Zhang H (1996) The role of cerebro-ponto-cerebellar pathways in the control of vergence eye movements. Eye 10(2):167–171

    Article  PubMed  Google Scholar 

  • Gauthier G, Vercher JL, Ivaldi FM, Marchetti E (1988) Oculo-manual tracking of visual targets: control learning, coordination control and coordination model. Exp Brain Res 73(1):127–137

    CAS  Article  PubMed  Google Scholar 

  • Gonzalez DA, Niechwiej-Szwedo E (2016) The effects of monocular viewing on hand–eye coordination during sequential grasping and placing movements. Vis Res 128:30–38

    Article  PubMed  Google Scholar 

  • Grant S, Suttle C, Melmoth DR, Conway ML, Sloper JJ (2014) Age- and stereovision-dependent eye–hand coordination deficits in children with amblyopia and abnormal binocularity. Investig Ophthalmol Vis Sci 55(9):5687

    Article  Google Scholar 

  • Guna J, Jakus G, Pogačnik M, Tomažič S, Sodnik J (2014) An analysis of the precision and reliability of the leap motion sensor and its suitability for static and dynamic tracking. Sensors 14(2):3702–3720

    Article  PubMed  PubMed Central  Google Scholar 

  • Hainline L, Riddell PM (1995) Binocular alignment and vergence in early infancy. Vis Res 35(23):3229–3236

    CAS  Article  PubMed  Google Scholar 

  • Hainline L, Turkel J, Abramov I, Lemerise E, Harris CM (1984) Characteristics of saccades in human infants. Vis Res 24(12):1771–1780

    CAS  Article  PubMed  Google Scholar 

  • Handa T, Mukuno K, Uozato H, Niida T, Shoji N, Shimizu K (2004) Effects of dominant and nondominant eyes in binocular rivalry. Optom Vis Sci 81(5):377–383

    Article  PubMed  Google Scholar 

  • Hendrickson AE, Movshon J, Eggers HM, Gizzi MS, Boothe R, Kiorpes L (1987) Effects of early unilateral blur on the macaque’s visual system. II. Anatomical observations. J Neurosci 7(5):1327–1339

    CAS  PubMed  Google Scholar 

  • Hess R, Mansouri B, Thompson B (2010) A new binocular approach to the treatment of amblyopia in adults well beyond the critical period of visual development. Restor Neurol Neurosci 28(6):793–802

    CAS  PubMed  Google Scholar 

  • Hoffman DM, Girshick AR, Akeley K, Banks MS (2008) Vergence-accommodation conflicts hinder visual performance and cause visual fatigue. J Vis 8(3):33

    Article  PubMed  PubMed Central  Google Scholar 

  • Hyams S, Pokotilo E, Shkurko G (1977) Prevalence of refractive errors in adults over 40: a survey of 8102 eyes. Br J Ophthalmol 61(6):428–432

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Jackson CP, Miall RC, Balslev D (2010) Spatially valid proprioceptive cues improve the detection of a visual stimulus. Exp Brain Res 205(1):31–40

    Article  PubMed  PubMed Central  Google Scholar 

  • Judge SJ (1996) How is binocularity maintained during convergence and divergence? Eye 10(2):172–176

    Article  PubMed  Google Scholar 

  • Judge SJ, Cumming BG (1986) Neurons in the monkey midbrain with activity related to vergence eye movement and accommodation. J Neurophysiol 55(5):915–930

    CAS  Article  PubMed  Google Scholar 

  • Kamiya S (1984) Analysis of school myopia using the nidek auto-refractometer ar 3000. Part 2. Observation of frequency distribution of pupil refraction. Folia Ophthalmol Jpn 35:1755–1769

    Google Scholar 

  • Kiorpes L, Boothe R, Hendrickson A, Movshon JA, Eggers HM, Gizzi M (1987) Effects of early unilateral blur on the Macaque’s visual system. I. Behavioral observations. J Neurosci 7(5):1318–1326

    CAS  PubMed  Google Scholar 

  • Knox PJ, Simmers AJ, Gray LS, Cleary M (2012) An exploratory study: prolonged periods of binocular stimulation can provide an effective treatment for childhood amblyopia. Investig Ophthalmol Vis Sci 53(2):817–824

    Article  Google Scholar 

  • Koken PW, Erkelens CJ (1992) Influences of hand movements on eye movements in tracking tasks in man. Exp Brain Res 88(3):657–664

    CAS  Article  PubMed  Google Scholar 

  • Koken PW, Erkelens CJ (1993) Simultaneous hand tracking does not affect human vergence pursuit. Exp Brain Res 96(3):494–500

    CAS  Article  PubMed  Google Scholar 

  • Kotecha A, O’Leary N, Melmoth D, Grant S, Crabb DP (2009) The functional consequences of glaucoma for eyehand coordination. Investig Ophthalmol Vis Sci 50(1):203

    Article  Google Scholar 

  • Kretzmer ER (1952) Statistics of television signals. Bell Syst Tech J 31(4):751–763

    Article  Google Scholar 

  • Kwon M, Wiecek E, Dakin SC, Bex PJ (2015) Spatial-frequency dependent binocular imbalance in amblyopia. Sci Rep 5:17181

    Article  PubMed  PubMed Central  Google Scholar 

  • Lam AKC, Chau ASY, Lam WY, Leung GY, Man BSH (1996) Effect of naturally occurring visual acuity differences between two eyes in stereoacuity. Ophthal Physiol Opt 16(3):189–195

    CAS  Article  Google Scholar 

  • Lazzari S, Vercher JL, Buizza A (1997) Manuo-ocular coordination in target tracking. I. A model simulating human performance. Biol Cybern 77(4):257–266

    CAS  Article  PubMed  Google Scholar 

  • Li J, Thompson B, Deng D, Chan LY, Yu M, Hess RF (2013) Dichoptic training enables the adult amblyopic brain to learn. Curr Biol 23(8):R308–R309

    CAS  Article  PubMed  Google Scholar 

  • Lisberger SG (2015) Visual guidance of smooth pursuit eye movements. Annu Rev Vis Sci 1:447–468

    Article  PubMed  Google Scholar 

  • Maiello G, Chessa M, Solari F, Bex PJ (2014) Simulated disparity and peripheral blur interact during binocular fusion. J Vis 14(8):13

    Article  PubMed  PubMed Central  Google Scholar 

  • Maiello G, Gibaldi AP SS, Bex PJ (2016) Vergence eye movements to unbalanced dichoptic visual stimuli. In: 39th European conference on visual perception (ECVP) 2016 Barcelona, Perception, vol 45, pp 79–79

  • Maiello G, Harrison WJ, Bex PJ (2016) Monocular and binocular contributions to oculomotor plasticity. Sci Rep 6:31861

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Maiello G, Kerber KL, Thorn F, Bex PJ, Vera-Diaz FA (2018) Vergence driven accommodation with simulated disparity in myopia and emmetropia. Exp Eye Res 166:96–105

    CAS  Article  PubMed  Google Scholar 

  • Maiello G, Kwon M, Bex PJ (2016) 3 dimensional binocular eye and hand coordination in normal vision and with simulated visual impairments. J Vis 16(12):22–22

    Article  Google Scholar 

  • Mather JA, Lackner JR (1980) Visual tracking of active and passive movements of the hand. Q J Exp Psychol 32(2):307–315

    CAS  Article  PubMed  Google Scholar 

  • Mather JA, Lackner JR (1981) The influence of efferent, proprioceptive, and timing factors on the accuracy of eye–hand tracking. Exp Brain Res 43(3–4):406–412

    CAS  PubMed  Google Scholar 

  • Miall RC, Imamizu H, Miyauchi S (2000) Activation of the cerebellum in co-ordinated eye and hand tracking movements: an FMRI study. Exp Brain Res 135(1):22–33

    CAS  Article  PubMed  Google Scholar 

  • Miall RC, Reckess GZ, Imamizu H (2001) The cerebellum coordinates eye and hand tracking movements. Nat Neurosci 4(6):638–644

    CAS  Article  PubMed  Google Scholar 

  • Movshon JA, Eggers HM, Gizzi MS, Hendrickson AE, Kiorpes L, Boothe R (1987) Effects of early unilateral blur on the Macaque’s visual system. III. Physiological observations. J Neurosci 7(5):1340–1351

    CAS  PubMed  Google Scholar 

  • Murray S, Bex PJ (2010) Perceived blur in naturally contoured images depends on phase. Front Psychol 1:185

    Article  PubMed  PubMed Central  Google Scholar 

  • Niehorster DC, Siu WWF, Li L (2015) Manual tracking enhances smooth pursuit eye movements. J Vis 15(15):11

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Connor AR, Birch EE, Anderson S, Draper H (2010) The functional significance of stereopsis. Investig Ophthalmol Vis Sci 51(4):2019–2023

    Article  Google Scholar 

  • Ono H, Weber EU (1981) Nonveridical visual direction produced by monocular viewing. J Exp Psychol Hum Percept Perform 7(5):937

    CAS  Article  PubMed  Google Scholar 

  • Pelli DG (1997) The videotoolbox software for visual psychophysics: transforming numbers into movies. Spat Vis 10:437–442

    CAS  Article  PubMed  Google Scholar 

  • Perry CJ, Amarasooriya P, Fallah M (2016) An eye in the palm of your hand: alterations in visual processing near the hand, a mini-review. Front Comput Neurosci:10

  • Perry CJ, Sergio LE, Crawford JD, Fallah M (2015) Hand placement near the visual stimulus improves orientation selectivity in v2 neurons. J Neurophysiol 113(7):2859–2870

    Article  PubMed  PubMed Central  Google Scholar 

  • Reed CL, Grubb JD, Steele C (2006) Hands up: attentional prioritization of space near the hand. J Exp Psychol Hum Percept Perform 32(1):166

    Article  PubMed  Google Scholar 

  • Resnikoff S, Pascolini D, Mariotti SP, Pokharel GP (2008) Global magnitude of visual impairment caused by uncorrected refractive errors in 2004. Bull World Health Organ 86(1):63–70

    Article  PubMed  PubMed Central  Google Scholar 

  • Roucoux A, Culee C, Roucoux M (1983) Development of fixation and pursuit eye movements in human infants. Behav Brain Res 10(1):133–139

    CAS  Article  PubMed  Google Scholar 

  • Rushton SK, Riddell PM (1999) Developing visual systems and exposure to virtual reality and stereo displays: some concerns and speculations about the demands on accommodation and vergence. Appl Ergon 30(1):69–78

    CAS  Article  PubMed  Google Scholar 

  • Scarchilli K, Vercher JL (1999) The oculomanual coordination control center takes into account the mechanical properties of the arm. Exp Brain Res 124(1):42–52

    CAS  Article  PubMed  Google Scholar 

  • Schendel K, Robertson LC (2004) Reaching out to see: arm position can attenuate human visual loss. J Cogn Neurosci 16(6):935–943

    Article  PubMed  Google Scholar 

  • Schor C, Wood I, Ogawa J (1984) Binocular sensory fusion is limited by spatial resolution. Vis Res 24(7):661–665

    CAS  Article  PubMed  Google Scholar 

  • Schultz KP, Busettini C (2013) Short-term saccadic adaptation in the macaque monkey: a binocular mechanism. J Neurophysiol 109(2):518–545

    CAS  Article  PubMed  Google Scholar 

  • Schütz AC, Delipetkos E, Braun DI, Kerzel D, Gegenfurtner KR (2007) Temporal contrast sensitivity during smooth pursuit eye movements. J Vis 7(13):3

    Article  PubMed  Google Scholar 

  • Semmlow JL, Yuan W, Alvarez TL (1998) Evidence for separate control of slow version and vergence eye movements: support for hering’s law. Vis Res 38(8):1145–1152

    CAS  Article  PubMed  Google Scholar 

  • Sloper JJ, Suttle CM, Finlay AL, Melmoth DR, Grant S (2011) Impaired development of eye–hand coordination in children with strabismus and amblyopia. J Am Assoc Pediatr Ophthalmol Strabismus 15(1):e8

    Article  Google Scholar 

  • Smith G (1982) Angular diameter of defocus blur discs. Optom Vis Sci 59(11):885–889

    CAS  Article  Google Scholar 

  • Sorsby A, Sheridan M, Leary GA, Benjamin B (1960) Vision, visual acuity, and ocular refraction of young men. Br Med J 1(5183):1394

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Spering M, Kerzel D, Braun DI, Hawken MJ, Gegenfurtner KR (2005) Effects of contrast on smooth pursuit eye movements. J Vis 5(5):6

    Article  Google Scholar 

  • Steinbach MJ, Held R (1968) Eye tracking of observer-generated target movements. Science 161(3837):187–188

    CAS  Article  PubMed  Google Scholar 

  • Stewart C, Moseley M, Fielder A, Stephens D (2004) Refractive adaptation in amblyopia: quantification of effect and implications for practice. Br J Ophthalmol 88(12):1552–1556

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Suttle CM, Melmoth DR, Finlay AL, Sloper JJ, Grant S (2011) Eyehand coordination skills in children with and without amblyopia. Investig Ophthalmol Vis Sci 52(3):1851

    Article  Google Scholar 

  • Tailor V, Bossi M, Bunce C, Greenwood JA, Dahlmann-Noor A (2015) Binocular versus standard occlusion or blurring treatment for unilateral amblyopia in children aged three to eight years. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD011347.pub2

  • Tailor V, Bossi M, Greenwood JA, Dahlmann-Noor A (2016) Childhood amblyopia: current management and new trends. Br Med Bull 119(1):75–86. https://doi.org/10.1093/bmb/ldw030

  • Teather RJ, Pavlovych A, Stuerzlinger W, MacKenzie IS (2009) Effects of tracking technology, latency, and spatial jitter on object movement. In: 2009 IEEE symposium on 3D user interfaces, pp 43–50

  • Thier P, Ilg UJ (2005) The neural basis of smooth-pursuit eye movements. Curr Opin Neurobiol 15(6):645–652

    CAS  Article  PubMed  Google Scholar 

  • To L, Thompson B, Blum JR, Maehara G, Hess RF, Cooperstock JR (2011) A game platform for treatment of amblyopia. IEEE Trans Neural Syst Rehabil Eng 19(3):280–289

    Article  PubMed  Google Scholar 

  • Vedamurthy I, Knill DC, Huang SJ, Yung A, Ding J, Kwon OS, Bavelier D, Levi DM (2016) Recovering stereo vision by squashing virtual bugs in a virtual reality environment. Philos Trans R Soc B 371(1697):20150,264

    Article  Google Scholar 

  • Vercher JL, Gauthier G (1992) Oculo-manual coordination control: ocular and manual tracking of visual targets with delayed visual feedback of the hand motion. Exp Brain Res 90(3):599–609

    CAS  Article  PubMed  Google Scholar 

  • Vercher JL, Gauthier GM, Guedon O, Blouin J, Cole J, Lamarre Y (1996) Self-moved target eye tracking in control and deafferented subjects: roles of arm motor command and proprioception in arm-eye coordination. J Neurophysiol 76(2):1133–1144

    CAS  Article  PubMed  Google Scholar 

  • Vercher JL, Quaccia D, Gauthier G (1995) Oculo-manual coordination control: respective role of visual and non-visual information in ocular tracking of self-moved targets. Exp Brain Res 103(2):311–322

    CAS  Article  PubMed  Google Scholar 

  • Verghese P, Tyson TL, Ghahghaei S, Fletcher DC (2016) Depth perception and grasp in central field loss. Investig Ophthalmol Vis Sci 57(3):1476

    Article  Google Scholar 

  • von Noorden GK, Mackensen G (1962) Pursuit movements of normal and amblyopic eyes: an electro-ophthalmographic study 1. Physiology of pursuit movements. Am J Ophthalmol 53(2):325–336

    Article  Google Scholar 

  • Wann JP, Rushton S, Mon-Williams M (1995) Natural problems for stereoscopic depth perception in virtual environments. Vis Res 35(19):2731–2736

    CAS  Article  PubMed  Google Scholar 

  • Ward MK, Bolding MS, Schultz KP, Gamlin PD (2015) Mapping the macaque superior temporal sulcus: functional delineation of vergence and version eye-movement-related activity. J Neurosci 35(19):7428–7442

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Ware C, Balakrishnan R (1994) Reaching for objects in vr displays: lag and frame rate. ACM Trans Comput Hum Interact 1(4):331–356

    Article  Google Scholar 

  • Weichert F, Bachmann D, Rudak B, Fisseler D (2013) Analysis of the accuracy and robustness of the leap motion controller. Sensors 13(5):6380–6393

    Article  PubMed  PubMed Central  Google Scholar 

  • Westheimer G, Blair SM (1974) Functional organization of primate oculomotor system revealed by cerebellectomy. Exp Brain Res 21(5):463–472

    CAS  Article  PubMed  Google Scholar 

  • Wright KW, Spiegel PH, Thompson LS (2006) Handbook of pediatric strabismus and amblyopia. Springer, Berlin

    Book  Google Scholar 

  • Yang Q, Bucci MP, Kapoula Z (2002) The latency of saccades, vergence, and combined eye movements in children and in adults. Investig Ophthalmol Vis Sci 43(9):2939

    Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Jing Chen for help with setting up the pursuit onset detection algorithm originally developed by Dr. Alexander Schtz, as well as the two anonymous reviewers. This research was supported by the National Institutes of Health Grant R01EY021553. Data and analysis scripts are available from the Zenodo database (https://doi.org/10.5281/zenodo.1100971).

Author information

Authors and Affiliations

Authors

Contributions

GM, MK and PJB conceived and designed the study. GM programmed the experiments, and collected and analyzed the data. All authors wrote the manuscript.

Corresponding author

Correspondence to Guido Maiello.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maiello, G., Kwon, M. & Bex, P.J. Three-dimensional binocular eye–hand coordination in normal vision and with simulated visual impairment. Exp Brain Res 236, 691–709 (2018). https://doi.org/10.1007/s00221-017-5160-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-017-5160-8

Keywords

  • Smooth pursuit
  • Vergence
  • Ocular tracking of self-motion
  • Eye–hand coordination
  • Asymmetric visual impairment
  • Amblyopia and strabismus