Experimental Brain Research

, Volume 236, Issue 1, pp 99–115 | Cite as

The role of attention and intention in synchronization to music: effects on gait

  • Li-Ann LeowEmail author
  • Kristina Waclawik
  • Jessica A. Grahn
Research Article


Anecdotal accounts suggest that individuals spontaneously synchronize their movements to the ‘beat’ of background music, often without intending to, and perhaps even without attending to the music at all. However, the question of whether intention and attention are necessary to synchronize to the beat remains unclear. Here, we compared whether footsteps during overground walking were synchronized to the beat when young healthy adults were explicitly instructed to synchronize (intention to synchronize), and were not instructed to synchronize (no intention) (Experiment 1: intention). We also examined whether reducing participants’ attention to the music affected synchronization, again when participants were explicitly instructed to synchronize, and when they were not (Experiment 2: attention/intention). Synchronization was much less frequent when no instructions to synchronize were given. Without explicit instructions to synchronize, there was no evidence of synchronization in 60% of the trials in Experiment 1, and 43% of the trials in Experiment 2. When instructed to synchronize, only 26% of trials in Experiment 1, and 14% of trials in Experiment 2 showed no evidence of synchronization. Because walking to music alters gait, we also examined how gait kinematics changed with or without instructions to synchronize, and attention to the music was required for synchronization to occur. Instructions to synchronize elicited slower, shorter, and more variable strides than walking in silence. Reducing attention to the music did not significantly affect synchronization of footsteps to the beat, but did elicit slower gait. Thus, during walking, intention, but not attention, appears to be necessary to synchronize footsteps to the beat, and synchronization elicits slower, shorter, and more variable strides, at least in young healthy adults.


Sensorimotor synchronization Dance Music Attention Intention 



We would like to thank David Prete, Himanshu Gupta, and Cricia Rinchon for assistance with data collection. Funding was provided by Natural Sciences and Engineering Research Council of Canada and Ontario Research Fund.


  1. Asai T, Doi T, Hirata S, Ando H (2013) Dual tasking affects lateral trunk control in healthy younger and older adults. Gait Posture 38:830–836. doi: 10.1016/j.gaitpost.2013.04.005 CrossRefPubMedGoogle Scholar
  2. Ashoori A, Eagleman DM, Jankovic J (2015) Effects of auditory rhythm and music on gait disturbances in Parkinson’s disease. Front Neurol 6:234CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bella SD, Benoit C-E, Farrugia N, Keller PE, Obrig H, Mainka S, Kotz SA (2017) Gait improvement via rhythmic stimulation in Parkinson’s disease is linked to rhythmic skills. Sci Rep 7:42005. doi: 10.1038/srep42005 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Benoit CE, Dalla Bella S, Farrugia N, Obrig H, Mainka S, Kotz SA (2014) Musically cued gait-training improves both perceptual and motor timing in Parkinson’s disease. Front Hum Neurosci 8:494. doi: 10.3389/fnhum.2014.00494 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bouwer FL, Van Zuijen TL, Honing H (2014) Beat processing is pre-attentive for metrically simple rhythms with clear accents: an ERP study. PLoS One 9:e97467. doi: 10.1371/journal.pone.0097467 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bryant MS, Rintala DH, Lai EC, Protas EJ (2009) An evaluation of self-administration of auditory cueing to improve gait in people with Parkinson’s disease. Clin Rehabil 23:1078–1085. doi: 10.1177/0269215509337465 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Burger B, Thompson MR, Luck G, Saarikallio SH, Toiviainen P (2014) Hunting for the beat in the body: on period and phase locking in music-induced movement. Front Hum Neurosci 8:903. doi: 10.3389/fnhum.2014.00903 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cameron DJ, Pickett KA, Earhart GM, Grahn JA (2016) The effect of dopaminergic medication on beat-based auditory timing in Parkinson’s disease. Front Neurol. doi: 10.3389/fneur.2016.00019 PubMedPubMedCentralGoogle Scholar
  9. Chen HY, Wing AM, Pratt D (2006) The synchronisation of lower limb responses with a variable metronome: the effect of biomechanical constraints on timing. Gait Posture 23(3):307–314Google Scholar
  10. Chen JL, Penhune VB, Zatorre RJ (2008) Moving on time: brain network for auditory-motor synchronization is modulated by rhythm complexity and musical training. J Cogn Neurosci 20:226–239CrossRefPubMedGoogle Scholar
  11. Delacre M, Lakens D, Leys C (2017) Why psychologists should by default use Welch’s t-test instead of Student’s t-test. Int Rev Soc Psychol 30(1):92–101. doi: 10.5334/irsp.82
  12. Demos AP, Chaffin R, Begosh KT, Daniels JR, Marsh KL (2012) Rocking to the beat: effects of music and partner’s movements on spontaneous interpersonal coordination. J Exp Psychol Gen 141:49–53. doi: 10.1037/a0023843 CrossRefPubMedGoogle Scholar
  13. Dixon S (2007) Evaluation of the audio beat tracking system BeatRoot. J New Music Res 36:39–50. doi: 10.1080/09298210701653310 CrossRefGoogle Scholar
  14. Dotov D et al (2017) Biologically-variable rhythmic auditory cues are superior to isochronous cues in fostering natural gait variability in Parkinson’s disease. Gait Posture 51:64–69CrossRefPubMedGoogle Scholar
  15. Fujii S, Schlaug G (2013) The Harvard Beat Assessment Test (H-BAT): a battery for assessing beat perception and production and their dissociation. Front Hum Neurosci 7:771. doi: 10.3389/fnhum.2013.00771 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Geiser E, Ziegler E, Jancke L, Meyer M (2009) Early electrophysiological correlates of meter and rhythm processing in music perception. Cortex 45:93–102CrossRefPubMedGoogle Scholar
  17. Geiser E, Sandmann P, Jäncke L, Meyer M (2010) Refinement of metre perception—training increases hierarchical metre processing. Eur J Neurosci 32:1979–1985CrossRefPubMedGoogle Scholar
  18. Giovannelli F et al (2012) Role of the dorsal premotor cortex in rhythmic auditory-motor entrainment: a perturbational approach by rTMS. Cereb Cortex. doi: 10.1093/cercor/bhs386 PubMedGoogle Scholar
  19. Grahn JA, McAuley JD (2009) Neural bases of individual differences in beat perception. NeuroImage 47:1894–1903CrossRefPubMedGoogle Scholar
  20. Hausdorff JM (2007) Gait dynamics, fractals and falls: finding meaning in the stride-to-stride fluctuations of human walking. Hum Mov Sci 26:555–589. doi: 10.1016/j.humov.2007.05.003 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hausdorff JM, Lowenthal J, Herman T, Gruendlinger L, Peretz C, Giladi N (2007) Rhythmic auditory stimulation modulates gait variability in Parkinson’s disease. Eur J Neurosci 26:2369–2375. doi: 10.1111/j.1460-9568.2007.05810.x CrossRefPubMedGoogle Scholar
  22. Hollman JH, Childs KB, McNeil ML, Mueller AC, Quilter CM, Youdas JW (2010) Number of strides required for reliable measurements of pace, rhythm and variability parameters of gait during normal and dual task walking in older individuals. Gait Posture 32:23–28. doi: 10.1016/j.gaitpost.2010.02.017 CrossRefPubMedGoogle Scholar
  23. Hove MJ, Keller PE (2010) Spatiotemporal relations and movement trajectories in visuomotor synchronization. Music Percept Interdiscip J 28(1):15–26. doi: 10.1525/mp.2010.28.1.15
  24. Hove MJ, Suzuki K, Uchitomi H, Orimo S, Miyake Y (2012) Interactive rhythmic auditory stimulation reinstates natural 1/f timing in gait of parkinson’s patients. PLoS One 7Google Scholar
  25. Janata P, Tomic ST, Haberman JM (2012) Sensorimotor coupling in music and the psychology of the groove. J Exp Psychol 141:54–75. doi: 10.1037/a0024208 CrossRefGoogle Scholar
  26. Kelly VE, Janke AA, Shumway-Cook A (2010) Effects of instructed focus and task difficulty on concurrent walking and cognitive task performance in healthy young adults. Exp Brain Res 207:65–73. doi: 10.1007/s00221-010-2429-6 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Ladinig O, Honing H, Háden G, Winkler I (2009) Probing attentive and preattentive emergent meter in adult listeners without extensive music training. Music Percept 26:377–386CrossRefGoogle Scholar
  28. Ladinig O, Honing H, Háden G, Winkler I (2011) Erratum to Probing attentive and pre-attentive emergent meter in adult listeners without extensive music training. Music Percept Interdiscip J 28:444. doi: 10.1525/mp.2011.28.4.444 CrossRefGoogle Scholar
  29. Launay J, Grube M, Stewart L (2014) Dysrhythmia: a specific congenital rhythm perception deficit. Front Psychol 5:18. doi: 10.3389/fpsyg.2014.00018 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Leman M, Moelants D, Varewyck M, Styns F, van Noorden L, Martens JP (2013) Activating and relaxing music entrains the speed of beat synchronized walking. PLoS One 8:e67932. doi: 10.1371/journal.pone.0067932 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Leow LA, Parrott T, Grahn JA (2014) Individual differences in beat perception affect gait responses to low- and high-groove music. Front Hum Neurosci. doi: 10.3389/Fnhum.2014.00811 PubMedPubMedCentralGoogle Scholar
  32. Leow LA, Rinchon C, Grahn J (2015) Familiarity with music increases walking speed in rhythmic auditory cuing. Ann N Y Acad Sci 1337(1):53–61Google Scholar
  33. Lim I et al (2005a) Effects of external rhythmical cueing on gait in patients with Parkinson’s disease: a systematic review. Clin Rehabil 19:695–713. doi: 10.1191/0269215505cr906oa CrossRefPubMedGoogle Scholar
  34. Lim I et al (2005b) Effects of external rhythmical cueing on gait in patients with Parkinson’s disease: a systematic review. Clin Rehabil 19:695–713CrossRefPubMedGoogle Scholar
  35. Madison G (2006) Experiencing groove induced by music: consistency and phenomenology. Music Percept Interdiscip J 24:201–208CrossRefGoogle Scholar
  36. McIntosh GC, Brown SH, Rice RR, Thaut MH (1997) Rhythmic auditory-motor facilitation of gait patterns in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 62:22–26CrossRefPubMedPubMedCentralGoogle Scholar
  37. Mendonca C, Oliveira M, Fontes L, Santos J (2014) The effect of instruction to synchronize over step frequency while walking with auditory cues on a treadmill. Hum Mov Sci 33:33–42. doi: 10.1016/j.humov.2013.11.006 CrossRefPubMedGoogle Scholar
  38. Mendonça C, Oliveira M, Fontes L, Santos J (2014) The effect of instruction to synchronize over step frequency while walking with auditory cues on a treadmill. Hum Mov Sci 33:33–42. doi: 10.1016/j.humov.2013.11.006 CrossRefPubMedGoogle Scholar
  39. Merchant H, Luciana M, Hooper C, Majestic S, Tuite P (2008) Interval timing and Parkinson’s disease: heterogeneity in temporal performance. Exp Brain Res 184:233–248. doi: 10.1007/s00221-007-1097-7 CrossRefPubMedGoogle Scholar
  40. Miller NS, Kwak Y, Bohnen NI, Muller ML, Dayalu P, Seidler RD (2013) The pattern of striatal dopaminergic denervation explains sensorimotor synchronization accuracy in Parkinson’s disease. Behav Brain Res 257:100–110. doi: 10.1016/j.bbr.2013.09.032 CrossRefPubMedGoogle Scholar
  41. Moens B et al (2014) Encouraging spontaneous synchronisation with d-jogger, an adaptive music player that aligns movement and music. PLoS One 9:e114234. doi: 10.1371/journal.pone.0114234 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Murray M, Spurr G, Sepic S, Gardner G, Mollinger L (1985) Treadmill vs. floor walking: kinematics, electromyogram, and heart rate. J Appl Physiol 59:87–91CrossRefPubMedGoogle Scholar
  43. Nombela C, Hughes LE, Owen AM, Grahn JA (2013) Into the groove: can rhythm influence Parkinson’s disease? Neurosci Biobehav Rev 37:2564–2570. doi: 10.1016/j.neubiorev.2013.08.003 CrossRefPubMedGoogle Scholar
  44. Peckel M, Pozzo T, Bigand E (2014) The impact of the perception of rhythmic music on self-paced oscillatory movements. Front Psychol 5Google Scholar
  45. Peper CLE, Oorthuizen JK, Roerdink M (2012) Attentional demands of cued walking in healthy young and elderly adults. Gait Posture 36:378–382CrossRefPubMedGoogle Scholar
  46. Repp BH, Keller PE (2004) Adaptation to tempo changes in sensorimotor synchronization: effects of intention, attention, and awareness. Q J Exp Psychol Sect A Hum Exp Psychol 57:499–521CrossRefGoogle Scholar
  47. Rochester L, Hetherington V, Jones D, Nieuwboer A, Willems AM, Kwakkel G, Van Wegen E (2005) The effect of external rhythmic cues (auditory and visual) on walking during a functional task in homes of people with Parkinson’s disease. Arch Phys Med Rehabil 86:999–1006. doi: 10.1016/j.apmr.2004.10.040 CrossRefPubMedGoogle Scholar
  48. Salame P, Baddeley A (1982) Disruption of short-term-memory by unattended speech—implications for the structure of working memory. J Verbal Learn Verbal Behav 21:150–164. doi: 10.1016/S0022-5371(82)90521-7 CrossRefGoogle Scholar
  49. Salame P, Baddeley A (1989) Effects of background music on phonological short-term-memory. Q J Exp Psychol A 41:107–122CrossRefGoogle Scholar
  50. Sowinski J, Dalla Bella S (2013) Poor synchronization to the beat may result from deficient auditory-motor mapping. Neuropsychologia 51:1952–1963. doi: 10.1016/j.neuropsychologia.2013.06.027 CrossRefPubMedGoogle Scholar
  51. Styns F, van Noorden L, Moelants D, Leman M (2007) Walking on music. Hum Mov Sci 26:769–785CrossRefPubMedGoogle Scholar
  52. Thaut MH, Abiru M (2010) Rhythmic auditory stimulation in rehabilitation of movement disorders: a review of current research. Music Percept 27:263–269. doi: 10.1525/mp.2010.27.4.263 CrossRefGoogle Scholar
  53. Thaut MH, McIntosh GC, Rice RR, Miller RA, Rathbun J, Brault JM (1996) Rhythmic auditory stimulation in gait training for Parkinson’s disease patients. Mov Disord 11:193–200. doi: 10.1002/mds.870110213 CrossRefPubMedGoogle Scholar
  54. Toiviainen P, Luck G, Thompson MRMR (2010) Embodied meter: hierarchical eigenmodes in music-induced movement. Music Percept 28:59–70CrossRefGoogle Scholar
  55. Van Overschelde JP, Rawson KA, Dunlosky J (2004) Category norms: An updated and expanded version of the norms. J Mem Lang 50(3):289–335Google Scholar
  56. Wittwer JE, Webster KE, Hill K (2013) Music and metronome cues produce different effects on gait spatiotemporal measures but not gait variability in healthy older adults. Gait Posture 37(2):219–222Google Scholar
  57. Yogev G, Giladi N, Peretz C, Springer S, Simon ES, Hausdorff JM (2005) Dual tasking, gait rhythmicity, and Parkinson’s disease: which aspects of gait are attention demanding? Eur J Neurosci 22:1248–1256CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, Building 26BThe University of QueenslandBrisbaneAustralia
  2. 2.Department of PsychologyUniversity of Western OntarioLondonCanada
  3. 3.Brain and Mind InstituteUniversity of Western OntarioLondonCanada

Personalised recommendations