Experimental Brain Research

, Volume 235, Issue 11, pp 3517–3526 | Cite as

Effects of lesions in different nuclei of the amygdala on conditioned taste aversion

  • Andrés Molero-ChamizoEmail author
  • Guadalupe Nathzidy Rivera-Urbina
Research Article


Conditioned taste aversion (CTA) is an adaptive learning that depends on brain mechanisms not completely identified. The amygdala is one of the structures that make up these mechanisms, but the involvement of its nuclei in the acquisition of CTA is unclear. Lesion studies suggest that the basolateral complex of the amygdala, including the basolateral and lateral amygdala, could be involved in CTA. The central amygdala has also been considered as an important nucleus for the acquisition of CTA in some studies. However, to the best of our knowledge, the effect of lesions of the basolateral complex of the amygdala on the acquisition of CTA has not been directly compared with the effect of lesions of the central and medial nuclei of the amygdala. The aim of this study is to compare the effect of lesions of different nuclei of the amygdala (the central and medial amygdala and the basolateral complex) on the acquisition of taste aversion in male Wistar rats. The results indicate that lesions of the basolateral complex of the amygdala reduce the magnitude of the CTA when compared with lesions of the other nuclei and with animals without lesions. These findings suggest that the involvement of the amygdala in the acquisition of CTA seems to depend particularly on the integrity of the basolateral complex of the amygdala.


Basolateral amygdala Central amygdala Learning Medial amygdala Taste aversion 



This work was supported by a CICYT Grant (BSO2002-01215), Ministry of Science and Technology (MICYT), Spain. The authors wish to thank the anonymous reviewers for their valuable comments and suggestions and M. Gallo, I. Morón, and M. A. Ballesteros for their contribution to the execution of the experiment.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.


  1. Agüera AD, Puerto A (2015) Lesions of the central nucleus of the amygdala only impair flavor aversion learning in the absence of olfactory information. Acta Neurobiol Exp (Wars) 75:381–390Google Scholar
  2. Aubry AV, Serrano PA, Burghardt NS (2016) Molecular mechanisms of stress-induced increases in fear memory consolidation within the amygdala. Front Behav Neurosci 10:191. doi: 10.3389/fnbeh.2016.00191 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bermudez-Rattoni F (2014) The forgotten insular cortex: its role on recognition memory formation. Neurobiol Learn Mem 109:207–216. doi: 10.1016/j.nlm.2014.01.001 CrossRefPubMedGoogle Scholar
  4. Bermúdez-Rattoni F, McGaugh JL (1991) Insular cortex and amygdala lesions differentially affect acquisition of inhibitory avoidance and conditioned taste aversion. Brain Res 549:165–170. doi: 10.1016/0006-8993(91)90616-4 CrossRefPubMedGoogle Scholar
  5. Bermúdez-Rattoni F, Yamamoto T (1998) Neuroanatomy of CTA: lesions studies. In: Bures J, Bermúdez-Rattoni F, Yamamoto T (eds) Conditioned taste aversion: memory of a special kind. Oxford University Press, New York, pp 28–44Google Scholar
  6. Bermúdez-Rattoni F, Ramírez-Lugo L, Gutiérrez R, Miranda MI (2004) Molecular signals into the insular cortex and amygdala during aversive gustatory memory formation. Cell Mol Neurobiol 24:25–36. doi: 10.1023/B:CEMN.0000012722.45805.c8 CrossRefPubMedGoogle Scholar
  7. Bernstein IL (1999) Taste aversion learning: a contemporary perspective. Nutrition 15:229–234. doi: 10.1016/S0899-9007(98)00192-0 CrossRefPubMedGoogle Scholar
  8. Bielavska E, Roldan G (1996) Ipsilateral connections between the gustatory cortex, amygdala and parabrachial nucleus are necessary for acquisition and retrieval of conditioned taste aversion in rats. Behav Brain Res 81:25–31. doi: 10.1016/S0166-4328(96)00039-3 CrossRefPubMedGoogle Scholar
  9. Bocchio M, McHugh SB, Bannerman DM, Sharp T, Capogna M (2016) Serotonin, amygdala and fear: assembling the puzzle. Front Neural Circuits 10:24. doi: 10.3389/fncir.2016.00024 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Castillo DV, Escobar ML (2011) A role for MAPK and PI-3K signaling pathways in brain-derived neurotrophic factor modification of conditioned taste aversion retention. Behav Brain Res 217:248–252. doi: 10.1016/j.bbr.2010.10.013 CrossRefPubMedGoogle Scholar
  11. Cunha C, Monfils MH, Ledoux JE (2010) GABA(C) receptors in the lateral amygdala: a possible novel target for the treatment of fear and anxiety disorders? Front Behav Neurosci 4:6. doi: 10.3389/neuro.08.006.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Donofry SD, Roecklein KA, Wildes JE, Miller MA, Erickson KI (2016) Alterations in emotion generation and regulation neurocircuitry in depression and eating disorders: a comparative review of structural and functional neuroimaging studies. Neurosci Biobehav Rev 68:911–927. doi: 10.1016/j.neubiorev.2016.07.011 CrossRefPubMedGoogle Scholar
  13. Gallo M, Roldan G, Bures J (1992) Differential involvement of gustatory insular cortex and amygdala in the acquisition and retrieval of conditioned taste aversion in rats. Behav Brain Res 52:91–97CrossRefPubMedGoogle Scholar
  14. Gallo M, Gámiz F, Perez-García M, Del Moral RG, Rolls ET (2014) Taste and olfactory status in a gourmand with a right amygdala lesion. Neurocase 20:421–433. doi: 10.1080/13554794.2013.791862 CrossRefPubMedGoogle Scholar
  15. Garcia-Delatorre P, Pérez-Sánchez C, Guzmán-Ramos K, Bermúdez-Rattoni F (2014) Role of glutamate receptors of central and basolateral amygdala nuclei on retrieval and reconsolidation of taste aversive memory. Neurobiol Learn Mem 111:35–40. doi: 10.1016/j.nlm.2014.03.003 CrossRefPubMedGoogle Scholar
  16. García-Medina NE, Vera G, Miranda MI (2015) Chemical stimulation or glutamate injections in the nucleus of solitary tract enhance conditioned taste aversion. Behav Brain Res 278:202–209. doi: 10.1016/j.bbr.2014.09.023 CrossRefPubMedGoogle Scholar
  17. Geerse GJ, van Gurp LC, van Wijk DC, Wiegant VM, Stam R (2007) Duodenal pain and spinal morphine induce conditioned taste aversion in rats. Physiol Behav 91:310–317. doi: 10.1016/j.physbeh.2007.03.007 CrossRefPubMedGoogle Scholar
  18. Gómez-Chacón B, Gámiz F, Foster TC, Gallo M (2016) Increased N-ethylmaleimide-sensitive factor expression in amygdala and perirhinal cortex during habituation of taste neophobia. Neural Plast 2016:2726745. doi: 10.1155/2016/2726745 CrossRefPubMedGoogle Scholar
  19. Gonella S, Dimonte V (2016) Potential effects of pleasant and cold stimuli on nausea and vomiting induced by disgusting tastes. J Neurosci Res 94:366–377. doi: 10.1002/jnr.23724 CrossRefPubMedGoogle Scholar
  20. Gründemann J, Lüthi (2015) Ensemble coding in amygdala circuits for associative learning. Curr Opin Neurobiol 35:200–206. doi: 10.1016/j.conb.2015.10.005 CrossRefPubMedGoogle Scholar
  21. Guzman-Ramos K, Bermudez-Rattoni F (2012) Interplay of amygdala and insular cortex during and after associative taste aversion memory formation. Rev Neurosci 23:463–471. doi: 10.1515/revneuro-2012-0056 CrossRefPubMedGoogle Scholar
  22. Hadamitzky M, Orlowski K, Schwitalla JC, Bösche K, Unteroberdörster M, Bendix I, Engler H, Schedlowski M (2016) Transient inhibition of protein synthesis in the rat insular cortex delays extinction of conditioned taste aversion with cyclosporine A. Neurobiol Learn Mem 133:129–135. doi: 10.1016/j.nlm.2016.06.008 CrossRefPubMedGoogle Scholar
  23. Inui T, Inui-Yamamoto C, Yoshioka Y, Ohzawa I, Shimura T (2013) Activation of efferents from the basolateral amygdala during the retrieval of conditioned taste aversion. Neurobiol Learn Mem 106:210–220. doi: 10.1016/j.nlm.2013.09.003 CrossRefPubMedGoogle Scholar
  24. Izquierdo I, Furini CR, Myskiw JC (2016) Fear Memory. Physiol Rev 96:695–750. doi: 10.1152/physrev.00018.2015 CrossRefPubMedGoogle Scholar
  25. Keifer OP Jr, Hurt RC, Ressler KJ, Marvar PJ (2015) The physiology of fear: reconceptualizing the role of the central amygdala in fear learning. Physiology (Bethesda) 30:389–401. doi: 10.1152/physiol.00058.2014 Google Scholar
  26. Kim MJ, Mizumori SJ, Bernstein IL (2010) Neuronal representation of conditioned taste in the basolateral amygdala of rats. Neurobiol Learn Mem 93:406–414. doi: 10.1016/j.nlm.2009.12.007 CrossRefPubMedGoogle Scholar
  27. Kimbrough AA, Biggs LM (2014) BDNF signaling potentiates transmission of information from the basolateral amygdala to infralimbic prefrontal cortex during conditioned taste aversion extinction. J Neurosci 34:12617–12618. doi: 10.1523/JNEUROSCI.2882-14.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kolada E, Bielski K, Falkiewicz M, Szatkowska I (2017) Functional organization of the human amygdala in appetitive learning. Acta Neurobiol Exp (Wars) 77:118–127Google Scholar
  29. Koo JW, Han JS, Kim JJ (2004) Selective neurotoxic lesions of basolateral and central nuclei of the amygdala produce differential effects on fear conditioning. J Neurosci 24:7654–7662. doi: 10.1523/JNEUROSCI.1644-04.2004 CrossRefPubMedGoogle Scholar
  30. Manns JR, Bass DI (2016) The amygdala and prioritization of declarative memories. Curr Dir Psychol Sci 25:261–265. doi: 10.1177/0963721416654456 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Martínez-Moreno A, Rodríguez-Durán LF, Escobar ML (2011) Late protein synthesis-dependent phases in CTA long-term memory: BDNF requirement. Front Behav Neurosci 5:61. doi: 10.3389/fnbeh.2011.00061 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Miranda MI (2012) Taste and odor recognition memory: the emotional flavor of life. Rev Neurosci 23:481–499. doi: 10.1515/revneuro-2012-0064 CrossRefPubMedGoogle Scholar
  33. Miranda MI, Bermúdez-Rattoni F (1999) Reversible inactivation of the nucleus basalis magnocellularis induces disruption of cortical acetylcholine release and acquisition, but not retrieval, of aversive memories. Proc Natl Acad Sci USA 96:6478–6482. doi: 10.1073/pnas.96.11.6478 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Miranda MI, McGaugh JL (2004) Enhancement of inhibitory avoidance and conditioned taste aversion memory with insular cortex infusions of 8-Br-cAMP: involvement of the basolateral amygdala. Learn Mem 11:312–317. doi: 10.1101/lm.72804 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Miranda MI, LaLumiere RT, Buen TV, Bermudez-Rattoni F, McGaugh JL (2003) Blockade of noradrenergic receptors in the basolateral amygdala impairs taste memory. Eur J Neurosci 18:2605–2610. doi: 10.1046/j.1460-9568.2003.03008.x CrossRefPubMedGoogle Scholar
  36. Molero-Chamizo A (2017) Modulation of the magnitude of conditioned taste aversion in rats with excitotoxic lesions of the basolateral amygdala. Neurobiol Learn Mem 137:56–64. doi: 10.1016/j.nlm.2016.11.009 CrossRefPubMedGoogle Scholar
  37. Morris R, Frey S, Kasambira T, Petrides M (1999) Ibotenic acid lesions of the basolateral, but not the central, amygdala interfere with conditioned taste aversion: evidence from a combined behavioral and anatomical tract-tracing investigation. Behav Neurosci 113:291–302. doi: 10.1037/0735-7044.113.2.291 CrossRefPubMedGoogle Scholar
  38. Parkes SL, Westbrook RF (2011) Role of the basolateral amygdala and NMDA receptors in higher-order conditioned fear. Rev Neurosci 22:317–333. doi: 10.1515/RNS.2011.025 CrossRefPubMedGoogle Scholar
  39. Paxinos G, Watson C (2005) The rat brain in stereotaxic coordinates: the new coronal set, 5th edn. Elsevier, LondonGoogle Scholar
  40. Prager EM, Bergstrom HC, Wynn GH, Braga MF (2016) The basolateral amygdala γ-aminobutyric acidergic system in health and disease. J Neurosci Res 94:548–567. doi: 10.1002/jnr.23690 CrossRefPubMedGoogle Scholar
  41. Reilly S (2009) Central gustatory system lesions and conditioned taste aversion. In: Reilly S, Schachtman TR (eds) Conditioned taste aversion: behavioral and neural processes. Oxford University Press, New York, pp 309–327Google Scholar
  42. Reilly S, Bornovalova MA (2005) Conditioned taste aversion and amygdala lesions in the rat: a critical review. Neurosci Biobehav Rev 29:1067–1088. doi: 10.1016/j.neubiorev.2005.03.025 CrossRefPubMedGoogle Scholar
  43. Rivera-Olvera A, Rodríguez-Durán LF, Escobarm ML (2016) Conditioned taste aversion prevents the long-lasting BDNF-induced enhancement of synaptic transmission in the insular cortex: a metaplastic effect. Neurobiol Learn Mem 130:71–76. doi: 10.1016/j.nlm.2016.01.014 CrossRefPubMedGoogle Scholar
  44. Roldan G, Bures J (1994) Tetrodotoxin blockade of amygdala overlapping with poisoning impairs acquisition of conditioned taste aversion in rats. Behav Brain Res 65:213–219. doi: 10.1016/0166-4328(94)90107-4 CrossRefPubMedGoogle Scholar
  45. Sakai N, Yamamoto T (1999) Possible routes of visceral information in the rat brain in formation of conditioned taste aversion. Neurosci Res 35:53–61. doi: 10.1016/S0168-0102(99)00067-X CrossRefPubMedGoogle Scholar
  46. Schafe GE, Bernstein IL (1996) Forebrain contribution to the induction of a brainstem correlate of conditioned taste aversion: I. The amygdala. Brain Res 741:109–116. doi: 10.1016/S0006-8993(96)00906-7 CrossRefPubMedGoogle Scholar
  47. Schiller D, Levy I, Niv Y, LeDoux JE, Phelps EA (2008) From fear to safety and back: reversal of fear in the human brain. J Neurosci 28:11517–11525. doi: 10.1523/JNEUROSCI.2265-08.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Scott TR (2011) Learning through the taste system. Front Syst Neurosci 5:1–6. doi: 10.3389/fnsys.2011.00087 CrossRefGoogle Scholar
  49. Soto A, Gasalla P, Begega A, López M (2017) c-Fos activity in the insular cortex, nucleus accumbens and basolateral amygdala following the intraperitoneal injection of saccharin and lithium chloride. Neurosci Lett 647:32–37. doi: 10.1016/j.neulet.2017.03.025 CrossRefPubMedGoogle Scholar
  50. Spray KJ, Bernstein IL (2004) Afferent and efferent connections of the parvicellular subdivision of iNTS: defining a circuit involved in taste aversion learning. Behav Brain Res 154:85–97. doi: 10.1016/j.bbr.2004.01.027 CrossRefPubMedGoogle Scholar
  51. St. Andre J, Reilly S (2007) Effects of central and basolateral amygdala lesions on conditioned taste aversion and latent inhibition. Behav Neurosci 121:90–99. doi: 10.1037/0735-7044.121.1.90 CrossRefPubMedGoogle Scholar
  52. Sun X, Kroemer NB, Veldhuizen MG, Babbs AE, de Araujo IE, Gitelman DR, Sherwin RS, Sinha R, Small DM (2015) Basolateral amygdala response to food cues in the absence of hunger is associated with weight gain susceptibility. J Neurosci 35:7964–7976. doi: 10.1523/JNEUROSCI.3884-14.2015 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Touzani K, Taghzouti K, Velley L (1997) Increase of the aversive value of taste stimuli following ibotenic acid lesion of the central amygdaloid nucleus in the rat. Behav Brain Res 88:133–142. doi: 10.1016/S0166-4328(96)02273-5 CrossRefPubMedGoogle Scholar
  54. Uematsu A, Kitamura A, Iwatsuki K, Uneyama H, Tsurugizawa T (2015) Correlation between activation of the prelimbic cortex, basolateral amygdala, and agranular insular cortex during taste memory formation. Cereb Cortex 25:2719–2728. doi: 10.1093/cercor/bhu069 CrossRefPubMedGoogle Scholar
  55. Wang S, Zhuang L, Yang X, Li Q, Xue Q, Luo Y, Zhang F, Yu B (2015) Impaired acquisition of conditioned taste aversion memory induced by isoflurane is accompanied with calcineurin activation and Egr-1 down-regulation in amygdala in rats. Neurosci Lett 607:114–119. doi: 10.1016/j.neulet.2015.09.022 CrossRefPubMedGoogle Scholar
  56. Xin J, Ma L, Zhang TY, Yu H, Wang Y, Kong L, Chen ZY (2014) Involvement of BDNF signaling transmission from basolateral amygdala to infralimbic prefrontal cortex in conditioned taste aversion extinction. J Neurosci 34:7302–7313. doi: 10.1523/JNEUROSCI.5030-13.2014 CrossRefPubMedGoogle Scholar
  57. Yamamoto T (1993) Neural mechanisms of taste aversion learning. Neurosci Res 16:181–185. doi: 10.1016/0168-0102(93)90122-7 CrossRefPubMedGoogle Scholar
  58. Yamamoto T, Ueji K (2011) Brain mechanisms of flavor learning. Front Syst Neurosci 5:76. doi: 10.3389/fnsys.2011.00076 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Yamamoto T, Fujimoto Y, Shimura T, Sakai N (1995) Conditioned taste aversion in rats with excitotoxic brain lesions. Neurosci Res 22:31–49. doi: 10.1016/0168-0102(95)00875-T CrossRefPubMedGoogle Scholar
  60. Zimmerman JM, Rabinak CA, McLachlan IG, Maren S (2007) The central nucleus of the amygdala is essential for acquiring and expressing conditional fear after overtraining. Learn Mem 14:634–644. doi: 10.1101/lm.607207 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of PsychobiologyUniversity of GranadaGranadaSpain
  2. 2.Autonomous University of Baja CaliforniaEnsenadaMexico
  3. 3.Department of Psychology. Psychobiology AreaUniversity of HuelvaHuelvaSpain

Personalised recommendations