Experimental Brain Research

, Volume 235, Issue 10, pp 3207–3216 | Cite as

Hemispheric differences in the processing of visual consequences of active vs. passive movements: a transcranial direct current stimulation study

  • Benjamin StraubeEmail author
  • Rasmus Schülke
  • Knut Drewing
  • Tilo Kircher
  • Bianca M. van Kemenade
Research Article


Perceiving the sensory consequences of one’s own actions is essential to successfully interact with the environment. Previous studies compared self- (active) and externally generated (passive) movements to investigate the processing of voluntary action–outcomes. Increased temporal binding (intentional binding) as well as increased detection of delays between action and outcome have been observed for active compared to passive movements. Using transcranial direct stimulation (tDCS) it has been shown that left hemispheric anodal stimulation decreased the intentional binding effect. However, whether the left hemisphere contributes to delay detection performance between action and outcome is unknown. We investigated polarization-dependent effects of left and right frontoparietal tDCS on detecting temporal action–outcome discrepancies. We applied anodal and cathodal stimulation to frontal (F3/F4), parietal (CP3/CP4) and frontoparietal (F3/CP4) areas. After stimulation, participants were presented with visual feedback with various delays after a key press. They had to report whether they detected a delay between the key press and the feedback. In half of the trials the key press was self-initiated, in the other half it was externally generated. A main effect of electrode location indicated highest detection performance after frontal stimulation. Furthermore, we found that the advantage for active versus passive conditions was larger for left hemispheric anodal stimulation as compared to cathodal stimulation. Whereas the frontal cortex is related to delay detection performance in general, hemispheric differences seem to support the differentiation of self-initiated versus externally generated movement consequences.


Transcranial direct current stimulation Action perception Action feedback Delay detection Hemispheric lateralization 



We thank Caro Wittke, Christina Schmitter and Leona Hömberg for their help with the data collection. Raw data are available at

Compliance with ethical standards


This work was supported by a research Grant from the University Medical Centre Giessen and Marburg (UKGM; Project Number 25/2015MR) and the German Research Foundation (SFB/TRR 135, Project A3, A5). Benjamin Straube is supported by the German Research Foundation (DFG; Project Numbers STR 1146/8-1 and STR 1146/9-1).

Conflict of interest

The authors have no conflicts of interest to declare.

Ethical Approval

The study was approved by the local ethics committee of the medical faculty of the Philipps-University Marburg, Germany (; registration number: 191/12).


  1. Backasch B, Sommer J, Klöhn-Saghatolislam F, Müller MJ, Kircher TT, Leube DT (2014) Dysconnectivity of the inferior frontal gyrus: implications for an impaired self-other distinction in patients with schizophrenia. Psychiatry Res 223:202–209. doi: 10.1016/j.pscychresns.2014.05.007 CrossRefPubMedGoogle Scholar
  2. Blakemore SJ, Wolpert DM, Frith CD (1998) Central cancellation of self-produced tickle sensation. Nat Neurosci 1:635–640. doi: 10.1038/2870 CrossRefPubMedGoogle Scholar
  3. Blakemore SJ, Wolpert DM, Frith CD (1999) The cerebellum contributes to somatosensory cortical activity during self-produced tactile stimulation. Neuroimage 10:448–459. doi: 10.1006/nimg.1999.0478 CrossRefPubMedGoogle Scholar
  4. Blakemore SJ, Wolpert D, Frith C (2000) Why can’t you tickle yourself? NeuroReport 11:R11–R16CrossRefPubMedGoogle Scholar
  5. Blakemore SJ, Frith CD, Wolpert DM (2001) The cerebellum is involved in predicting the sensory consequences of action. NeuroReport 12:1879–1884CrossRefPubMedGoogle Scholar
  6. Brainard DH (1997) The psychophysics toolbox. Spat Vis 10:433–436. doi: 10.1163/156856897X00357 CrossRefPubMedGoogle Scholar
  7. Cavazzana A, Penolazzi B, Begliomini C, Bisiacchi PS (2015) Neural underpinnings of the ‘agent brain’: new evidence from transcranial direct current stimulation. Eur J Neurosci 42:1889–1894. doi: 10.1111/ejn.12937 CrossRefPubMedGoogle Scholar
  8. David N, Cohen MX, Newen A, Bewernick BH, Shah NJ, Fink GR, Vogeley K (2007) The extrastriate cortex distinguishes between the consequences of one’s own and others’ behavior. Neuroimage 36:1004–1014. doi: 10.1016/j.neuroimage.2007.03.030 CrossRefPubMedGoogle Scholar
  9. Dockery CA, Hueckel-Weng R, Birbaumer N, Plewnia C (2009) Enhancement of planning ability by transcranial direct current stimulation. J Neurosci 29:7271–7277 (29/22/7271) CrossRefPubMedGoogle Scholar
  10. Douglas ZH, Maniscalco B, Hallett M, Wassermann EM, He BJ (2015) Modulating conscious movement intention by noninvasive brain stimulation and the underlying neural mechanisms. J Neurosci 35:7239–7255. doi: 10.1523/JNEUROSCI.4894-14.2015 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Dundas JE, Thickbroom GW, Mastaglia FL (2007) Perception of comfort during transcranial DC stimulation: effect of NaCl solution concentration applied to sponge electrodes. Clin Neurophysiol 118:1166–1170 (S1388-2457(07)00030-2) CrossRefPubMedGoogle Scholar
  12. Farrer C, Franck N, Georgieff N, Frith CD, Decety J, Jeannerod M (2003) Modulating the experience of agency: a positron emission tomography study. Neuroimage 18:324–333CrossRefPubMedGoogle Scholar
  13. Farrer C, Frey SH, Van Horn JD, Tunik E, Turk D, Inati S, Grafton ST (2008) The angular gyrus computes action awareness representations. Cereb Cortex 18:254–261. doi: 10.1093/cercor/bhm050 CrossRefPubMedGoogle Scholar
  14. Fründ I, Haenel NV, Wichmann FA (2011) Inference for psychometric functions in the presence of nonstationary behavior. J Vis 11. doi: 10.1167/11.6.16
  15. Gandiga PC, Hummel FC, Cohen LG (2006) Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin Neurophysiol 117:845–850 (S1388-2457(05)00507-9) CrossRefPubMedGoogle Scholar
  16. Haggard P, Clark S, Kalogeras J (2002) Voluntary action and conscious awareness. Nat Neurosci 5:382–385. doi: 10.1038/nn827 CrossRefPubMedGoogle Scholar
  17. Hashimoto Y, Sakai KL (2003) Brain activations during conscious self-monitoring of speech production with delayed auditory feedback: an fMRI study. Hum Brain Mapp 20:22–28. doi: 10.1002/hbm.10119 CrossRefPubMedGoogle Scholar
  18. Hecht D, Walsh V, Lavidor M (2013) Bi-frontal direct current stimulation affects delay discounting choices. Cogn Neurosci 4:7–11. doi: 10.1080/17588928.2011.638139 CrossRefPubMedGoogle Scholar
  19. Hughes G, Desantis A, Waszak F (2013) Mechanisms of intentional binding and sensory attenuation: the role of temporal prediction, temporal control, identity prediction, and motor prediction. Psychol Bull 139:133–151. doi: 10.1037/a0028566 CrossRefPubMedGoogle Scholar
  20. Iyer MB, Mattu U, Grafman J, Lomarev M, Sato S, Wassermann EM (2005) Safety and cognitive effect of frontal DC brain polarization in healthy individuals. Neurology 64:872–875 (64/5/872) CrossRefPubMedGoogle Scholar
  21. Javadi AH (2015) Modulation of the pre-supplementary motor area reduces the sense of agency (Commentary on Cavazzana et al.). Eur J Neurosci 42:1887–1888. doi: 10.1111/ejn.12954 CrossRefPubMedGoogle Scholar
  22. Khalighinejad N, Haggard P (2015) Modulating human sense of agency with non-invasive brain stimulation. Cortex 69:93–103. doi: 10.1016/j.cortex.2015.04.015 CrossRefPubMedGoogle Scholar
  23. Khalighinejad N, Di Costa S, Haggard P (2016) Endogenous action selection processes in dorsolateral prefrontal cortex contribute to sense of agency: a meta-analysis of tDCS studies of ‘intentional binding’. Brain Stimul 9:372–379. doi: 10.1016/j.brs.2016.01.005 CrossRefPubMedGoogle Scholar
  24. Kurayama T, Matsuzawa D, Komiya Z, Nakazawa K, Yoshida S, Shimizu E (2012) P50 suppression in human discrimination fear conditioning paradigm using danger and safety signals. Int J Psychophysiol 84:26–32. doi: 10.1016/j.ijpsycho.2012.01.004 CrossRefPubMedGoogle Scholar
  25. Leube DT, Knoblich G, Erb M, Grodd W, Bartels M, Kircher TT (2003) The neural correlates of perceiving one’s own movements. Neuroimage 20:2084–2090 (S1053811903004695) CrossRefPubMedGoogle Scholar
  26. Leube D, Whitney C, Kircher T (2008) The neural correlates of ego-disturbances (passivity phenomena) and formal thought disorder in schizophrenia. Eur Arch Psychiatry Clin Neurosci 258(Suppl 5):22–27. doi: 10.1007/s00406-008-5017-z CrossRefPubMedGoogle Scholar
  27. Leube DT, Knoblich G, Erb M, Schlotterbeck P, Kircher TT (2010) The neural basis of disturbed efference copy mechanism in patients with schizophrenia. Cogn Neurosci 1:111–117. doi: 10.1080/17588921003646156 CrossRefPubMedGoogle Scholar
  28. Moore JW, Obhi SS (2012) Intentional binding and the sense of agency: a review. Conscious Cogn 21:546–561. doi: 10.1016/j.concog.2011.12.002 CrossRefPubMedGoogle Scholar
  29. Nelson JT, McKinley RA, Golob EJ, Warm JS, Parasuraman R (2014) Enhancing vigilance in operators with prefrontal cortex transcranial direct current stimulation (tDCS). Neuroimage 85(Pt 3):909–917. doi: 10.1016/j.neuroimage.2012.11.061 CrossRefPubMedGoogle Scholar
  30. Nitsche MA, Paulus W (2000) Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 527(Pt 3):633–639 (PHY_1055) CrossRefPubMedPubMedCentralGoogle Scholar
  31. Nitsche MA, Paulus W (2001) Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 57:1899–1901CrossRefPubMedGoogle Scholar
  32. Nitsche MA, Liebetanz D, Lang N, Antal A, Tergau F, Paulus W (2003) Safety criteria for transcranial direct current stimulation (tDCS) in humans. Clin Neurophysiol 114:2220–2222 (author reply 2222-2223: S1388245703002359) CrossRefPubMedGoogle Scholar
  33. Palm U, Feichtner KB, Hasan A et al (2014) The role of contact media at the skin-electrode interface during transcranial direct current stimulation (tDCS). Brain Stimul 7:762–764. doi: 10.1016/j.brs.2014.06.006 CrossRefPubMedGoogle Scholar
  34. Poreisz C, Boros K, Antal A, Paulus W (2007) Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients. Brain Res Bull 72:208–214 (S0361-9230(07)00011-1) CrossRefPubMedGoogle Scholar
  35. Pynn LK, DeSouza JF (2013) The function of efference copy signals: implications for symptoms of schizophrenia. Vis Res 76:124–133. doi: 10.1016/j.visres.2012.10.019 CrossRefPubMedGoogle Scholar
  36. Rohde M, Ernst MO (2012) To lead and to lag—forward and backward recalibration of perceived visuo-motor simultaneity. Front Psychol 3:599. doi: 10.3389/fpsyg.2012.00599 PubMedGoogle Scholar
  37. Schülke R, Straube B (2017) Modulating the assessment of semantic speech-gesture relatedness via transcranial direct current stimulation of the left frontal cortex. Brain Stimul 10:223–230. doi: 10.1016/j.brs.2016.10.012 CrossRefPubMedGoogle Scholar
  38. Slutsky DA, Recanzone GH (2001) Temporal and spatial dependency of the ventriloquism effect. NeuroReport 12:7–10CrossRefPubMedGoogle Scholar
  39. Spitoni GF, Pireddu G, Cimmino RL et al (2013) Right but not left angular gyrus modulates the metric component of the mental body representation: a tDCS study. Exp Brain Res 228:63–72. doi: 10.1007/s00221-013-3538-9 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Stein BE, Meredith MA (1993) The merging of the senses. The MIT Press, CambridgeGoogle Scholar
  41. Stoeckel MC, Weder B, Binkofski F et al (2004) Left and right superior parietal lobule in tactile object discrimination. Eur J Neurosci 19:1067–1072CrossRefPubMedGoogle Scholar
  42. Straube B, Wolk D, Chatterjee A (2011) The role of the right parietal lobe in the perception of causality: a tDCS study. Exp Brain Res 215:315–325. doi: 10.1007/s00221-011-2899-1 CrossRefPubMedGoogle Scholar
  43. Straube B, van Kemenade BM, Arikan BE, Fiehler K, Leube DT, Harris LR, Kircher T (2017) Predicting the multisensory consequences of one’s own action: BOLD suppression in auditory and visual cortices. PLoS One 12:e0169131. doi: 10.1371/journal.pone.0169131 CrossRefPubMedPubMedCentralGoogle Scholar
  44. van Kemenade BM, Arikan BE, Kircher T, Straube B (2016) Predicting the sensory consequences of one’s own action: first evidence for multisensory facilitation. Atten Percept Psychophys. doi: 10.3758/s13414-016-1189-1 PubMedGoogle Scholar
  45. van Kemenade BM, Arikan EA, Kircher T, Straube B (2017) The angular gyrus is a supramodal comparator area in action-outcome monitoring. Brain Struct Funct. doi: 10.1007/s00429-017-1428-9 (in press) (epub ahead of print) PubMedGoogle Scholar
  46. Vroomen J, Keetels M (2006) The spatial constraint in intersensory pairing: no role in temporal ventriloquism. J Exp Psychol Hum Percept Perform 32:1063–1071. doi: 10.1037/0096-1523.32.4.1063 CrossRefPubMedGoogle Scholar
  47. Vroomen J, Keetels M (2010) Perception of intersensory synchrony: a tutorial review. Atten Percept Psychophys 72:871–884. doi: 10.3758/APP.72.4.871 CrossRefPubMedGoogle Scholar
  48. Wallace MT, Stevenson RA (2014) The construct of the multisensory temporal binding window and its dysregulation in developmental disabilities. Neuropsychologia 64:105–123. doi: 10.1016/j.neuropsychologia.2014.08.005 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Woods AJ, Antal A, Bikson M et al (2016) A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin Neurophysiol 127:1031–1048. doi: 10.1016/j.clinph.2015.11.012 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Psychiatry and PsychotherapyPhilipps University MarburgMarburgGermany
  2. 2.Department of PsychologyJustus-Liebig UniversityGiessenGermany

Personalised recommendations