The influence of imagery capacity in motor performance improvement

Abstract

Motor imagery (MI) training improves motor performance, but the inter-individual variability of this improvement remains still unexplored. In this study, we tested the influence of imagery ability on the performance improvement following MI training. Twenty participants were randomly distributed into the MI or control group. They actually performed, at pre- and post-test sessions, a revisited version of the Nine Hole Peg Test, a speed-accuracy trade-off task, commonly used in clinics. Between the tests, the MI group mentally trained on the task (5 blocks of 10 trials), while the control group watched a non-emotional documentary. Before and during MI training, we tested the imagery ability of the MI group, by the revised version of Movement Imagery Questionnaire and by the estimation of vividness for the movement task at each block (subjective evaluation—SE). In the post-test, the MI group significantly decreased the movement duration by −12.1 ± 5.7% (P < 0.001), whereas the control group did not (−2.68 ± 5%, P = 0.68). For the MI group, the percentage of improvement was correlated neither to the MIQ-R nor to the SE reported after block 1. However, we observed an evolution of the SE during training, with a positive correlation between performance improvement and SE at block 4 (R = 0.61, P = 0.03) and at block 5 (R = 0.68, P = 0.04). The current study shows that motor performance may be positively influenced, whilst not predicted, by the capacity to form vivid movement images throughout the mental training. These findings are of interest for clinical interventions using MI as a complementary rehabilitation tool.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Allami N, Paulignan Y, Brovelli A, Boussaoud D (2008) Visuo-motor learning with combination of different rates of motor imagery and physical practice. Exp Brain Res 184:105–113. doi:10.1007/s00221-007-1086-x

    Article  PubMed  Google Scholar 

  2. Anuar N, Cumming J, Williams SE (2016) Effects of applying the PETTLEP model on vividness and ease of imaging movement. J Appl Sport Psychol 28:185–198. doi:10.1080/10413200.2015.1099122

    Article  Google Scholar 

  3. Avanzino L, Giannini A, Tacchino A et al (2009) Motor imagery influences the execution of repetitive finger opposition movements. Neurosci Lett 466:11–15. doi:10.1016/j.neulet.2009.09.036

    CAS  Article  PubMed  Google Scholar 

  4. Avanzino L, Gueugneau N, Bisio A et al (2015) Motor cortical plasticity induced by motor learning through mental practice. Front Behav Neurosci. doi:10.3389/fnbeh.2015.00105

    Google Scholar 

  5. Calmels C, Holmes P, Berthoumieux C, Singer RN (2004) The development of movement imagery vividness through a structured intervention in Softball. J Sport Behav 27:307–322

    Google Scholar 

  6. Clark BC, Mahato NK, Nakazawa M et al (2015) The power of the mind: the cortex as a critical determinant of muscle strength/weakness. J Neurophysiol 112:3219–3226. doi:10.1152/jn.00386.2014

    Article  Google Scholar 

  7. Decety J, Grèzes J (1999) Neural mechanisms subserving the perception of human actions. Trends Cogn Sci 3:172–178. doi:10.1016/S1364-6613(99)01312-1

    CAS  Article  PubMed  Google Scholar 

  8. Decety J, Jeannerod M, Prablanc C (1989) The timing of mentally represented actions. Behav Brain Res 34:35–42

    CAS  Article  PubMed  Google Scholar 

  9. Driskell JE, Copper C, Moran A (1994) Does mental practice enhance performance? J Appl Psychol 79:481–492. doi:10.1037/0021-9010.79.4.481

    Article  Google Scholar 

  10. Facchini S, Muellbacher W, Battaglia F et al (2002) Focal enhancement of motor cortex excitability during motor imagery: a transcranial magnetic stimulation study. Acta Neurol Scand 105:146–151. doi:10.1034/j.1600-0404.2002.1o004.x

    CAS  Article  PubMed  Google Scholar 

  11. Fadiga L, Buccino G, Craighero L et al (1998) Corticospinal excitability is specifically modulated by motor imagery: a magnetic stimulation study. Neuropsychologia 37:147–158. doi:10.1016/S0028-3932(98)00089-X

    Article  Google Scholar 

  12. Frank C, Land WM, Popp C, Schack T (2014) Mental representation and mental practice: experimental investigation on the functional links between motor memory and motor imagery. PLoS One 9:e95175. doi:10.1371/journal.pone.0095175

    Article  PubMed  PubMed Central  Google Scholar 

  13. Frank C, Land WM, Schack T (2015) Perceptual-cognitive changes during motor learning: the influence of mental and physical practice on mental representation, gaze behavior, and performance of a complex action. Front Psychol 6:1981. doi:10.3389/fpsyg.2015.01981

    PubMed  Google Scholar 

  14. Gandrey P, Paizis C, Karathanasis V et al (2013) Dominant vs. nondominant arm advantage in mentally simulated actions in right handers. J Neurophysiol 110:2887–2894. doi:10.1152/jn.00123.2013

    Article  PubMed  Google Scholar 

  15. Gentili RJ, Papaxanthis C (2015) Laterality effects in motor learning by mental practice in right-handers. Neuroscience 297:231–242. doi:10.1016/j.neuroscience.2015.02.055

    CAS  Article  PubMed  Google Scholar 

  16. Gentili R, Papaxanthis C, Pozzo T (2006) Improvement and generalization of arm motor performance through motor imagery practice. Neuroscience 137:761–772. doi:10.1016/j.neuroscience.2005.10.013

    CAS  Article  PubMed  Google Scholar 

  17. Gentili R, Han CE, Schweighofer N, Papaxanthis C (2010) Motor learning without doing: trial-by-trial improvement in motor performance during mental training. J Neurophysiol 104:774–783. doi:10.1152/jn.00257.2010

    Article  PubMed  Google Scholar 

  18. Goodbody S, Wolpert D (1998) Temporal and amplitude generalization in motor learning. J Neurophysiol 79:1825–1838

    CAS  PubMed  Google Scholar 

  19. Goss S, Hall C, Buckolz E, Fishburne G (1986) Imagery ability and the acquisition and retention of movements. Mem Cognit 14:469–477. doi:10.3758/BF03202518

    CAS  Article  PubMed  Google Scholar 

  20. Grosprêtre S, Lebon F, Papaxanthis C, Martin A (2016) New evidence of corticospinal network modulation induced by motor imagery. J Neurophysiol 115:1279–1288. doi:10.1152/jn.00952.2015

    Article  PubMed  Google Scholar 

  21. Gueugneau N, Papaxanthis C (2010) Time-of-day effects on the internal simulation of motor actions: psychophysical evidence from pointing movements with the dominant and non-dominant arm. Chronobiol Int 27:620–639. doi:10.3109/07420521003664205

    Article  PubMed  Google Scholar 

  22. Gueugneau N, Crognier L, Papaxanthis C (2008) The influence of eye movements on the temporal features of executed and imagined arm movements. Brain Res 1187:95–102. doi:10.1016/j.brainres.2007.10.042

    CAS  Article  PubMed  Google Scholar 

  23. Gueugneau N, Schweighofer N, Papaxanthis C et al (2016) Daily update of motor predictions by physical activity. Sci Rep 5:17933. doi:10.1038/srep17933

    Article  Google Scholar 

  24. Guillot A, Collet C (2005) Duration of mentally simulated movement: a review. J Mot Behav 37:10–20. doi:10.3200/JMBR.37.1.10-20

    CAS  Article  PubMed  Google Scholar 

  25. Guillot A, Collet C, Nguyen VA et al (2008) Functional neuroanatomical networks associated with expertise in motor imagery. Neuroimage 41:1471–1483. doi:10.1016/j.neuroimage.2008.03.042

    Article  PubMed  Google Scholar 

  26. Guillot A, Tolleron C, Collet C (2010) Does motor imagery enhance stretching and flexibility? J Sports Sci 28:291–298. doi:10.1080/02640410903473828

    Article  PubMed  Google Scholar 

  27. Hall CR (1985) Individual differences in the mental practice and imagery of motor skill performance. Can J Appl Sport Sci 10:17S–21S

    CAS  PubMed  Google Scholar 

  28. Hall CR, Martin KA (1997) Measuring movement imagery abilities: a revision of the Movement Imagery Questionnaire. J Ment Imag 21:143–154

    Google Scholar 

  29. Hétu S, Grégoire M, Saimpont A et al (2013) The neural network of motor imagery: an ALE meta-analysis. Neurosci Biobehav Rev 37:930–949. doi:10.1016/j.neubiorev.2013.03.017

    Article  PubMed  Google Scholar 

  30. Jackson PL, Lafleur MF, Malouin F et al (2001) Potential role of mental practice using motor imagery in neurologic rehabilitation. Arch Phys Med Rehabil 82:1133–1141. doi:10.1053/apmr.2001.24286

    CAS  Article  PubMed  Google Scholar 

  31. Jeannerod M (1994) The representing brain: neural correlates of motor intention and imagery. Behav Brain Sci 17:187. doi:10.1017/S0140525X00034026

    Article  Google Scholar 

  32. Lebon F, Collet C, Guillot A (2010) Benefits of motor imagery training on muscle strength. J Strength Cond Res 24:1680–1687. doi:10.1519/JSC.0b013e3181d8e936

    Article  PubMed  Google Scholar 

  33. Lebon F, Byblow WD, Collet C et al (2012) The modulation of motor cortex excitability during motor imagery depends on imagery quality. Eur J Neurosci 35:323–331. doi:10.1111/j.1460-9568.2011.07938.x

    Article  PubMed  Google Scholar 

  34. Lovell G, Collins D (2001) Speed of image manipulation, imagery ability and motor skill acquisition. Int J Sport Psychol 32:355–368

    Google Scholar 

  35. Madan CR, Singhal A (2012) Motor imagery and higher-level cognition: four hurdles before research can sprint forward. Cogn Process 13:211–229. doi:10.1007/s10339-012-0438-z

    Article  PubMed  Google Scholar 

  36. Malouin F, Richards CL (2010) Mental practice for relearning locomotor skills. Phys Ther 90:240–251. doi:10.2522/ptj.20090029

    Article  PubMed  Google Scholar 

  37. Malouin F, Jackson PL, Richards CL (2013) Towards the integration of mental practice in rehabilitation programs. A critical review. Front Hum Neurosci 7:576. doi:10.3389/fnhum.2013.00576

    Article  PubMed  PubMed Central  Google Scholar 

  38. McAvinue L, Robertson I (2008) Measuring motor imagery ability: a review. Eur J Cogn Psychol 20:232–251. doi:10.1080/09541440701394624

    Article  Google Scholar 

  39. McAvinue L, Robertson I (2009) An evaluation of a movement imagery training scheme. Imagin Cognit Pers 29:99–114

    Article  Google Scholar 

  40. Miall R, Wolpert D (1996) Forward models for physiological motor control. Neural Netw 9:1265–1279. doi:10.1016/S0893-6080(96)00035-4

    Article  PubMed  Google Scholar 

  41. Mizuguchi N, Umehara I, Nakata H, Kanosue K (2013) Modulation of corticospinal excitability dependent upon imagined force level. Exp Brain Res 230:243–249. doi:10.1007/s00221-013-3649-3

    Article  PubMed  Google Scholar 

  42. Papaxanthis C, Paizis C, White O et al (2012) The relation between geometry and time in mental actions. PLoS One. doi:10.1371/journal.pone.0051191

    PubMed  PubMed Central  Google Scholar 

  43. Ranganathan VK, Siemionow V, Liu JZ et al (2004) From mental power to muscle power—gaining strength by using the mind. Neuropsychologia 42:944–956. doi:10.1016/j.neuropsychologia.2003.11.018

    Article  PubMed  Google Scholar 

  44. Robin N, Dominique L, Toussaint L et al (2007) Effects of motor imagery training on service return accuracy in tennis: the role of imagery ability. Int J Sport Exerc Psychol 5:175–186. doi:10.1080/1612197X.2007.9671818

    Article  Google Scholar 

  45. Rodgers W, Hall C, Buckolz E (1991) The effect of an imagery training program on imagery ability, imagery use, and figure skating performance. J Appl Sport Psychol 3:109–125. doi:10.1080/10413209108406438

    Article  Google Scholar 

  46. Rossini PM, Rossi S, Pasqualetti P, Tecchio F (1999) Corticospinal excitability modulation to hand muscles during movement imagery. Cereb Cortex 9:161–167. doi:10.1093/cercor/9.2.161

    CAS  Article  PubMed  Google Scholar 

  47. Rozand V, Lebon F, Papaxanthis C, Lepers R (2015) Effect of mental fatigue on speed-accuracy trade-off. Neuroscience 297:219–230. doi:10.1016/j.neuroscience.2015.03.066

    CAS  Article  PubMed  Google Scholar 

  48. Rozand V, Lebon F, Stapley PJ et al (2016) A prolonged motor imagery session alter imagined and actual movement durations: potential implications for neurorehabilitation. Behav Brain Res 297:67–75. doi:10.1016/j.bbr.2015.09.036

    Article  PubMed  Google Scholar 

  49. Shadmehr R, Mussa-Ivaldi F (1994) Adaptive representation of dynamics during learning of a motor task. J Neurosci 14:3208–3224

    CAS  PubMed  Google Scholar 

  50. Shadmehr R, Smith MA, Krakauer JW (2010) Error correction, sensory prediction, and adaptation in motor control. Annu Rev Neurosci 33:89–108. doi:10.1146/annurev-neuro-060909-153135

    CAS  Article  PubMed  Google Scholar 

  51. Vergeer I, Roberts J (2006a) Movement and stretching imagery during flexibility training. J Sports Sci 24:197–208. doi:10.1080/02640410500131811

    Article  PubMed  Google Scholar 

  52. Vergeer I, Roberts J (2006b) Movement and stretching imagery during flexibility training. J Sports Sci 24:197–208. doi:10.1080/02640410500131811

    Article  PubMed  Google Scholar 

  53. Wakefield C, Smith D (2012) Perfecting practice: applying the PETTLEP model of motor imagery. J Sport Psychol Action 3:1–11

    Article  Google Scholar 

  54. Watt AP, Spittle M, Morris T (2002) Evidence related to the evaluation of measures of sport imagery. J Sci Med Sport 5:29

    Article  Google Scholar 

  55. Williams SE, Cooley SJ, Cumming J (2013) Layered stimulus response training improves motor imagery ability and movement execution. J Sport Exerc Psychol 35:60–71. doi:10.1123/jsep.35.1.60

    Article  PubMed  Google Scholar 

  56. Wolpert DM, Flanagan JR (2001) Motor prediction. Curr Biol 11:R729–R732. doi:10.1016/S0960-9822(01)00432-8

    CAS  Article  PubMed  Google Scholar 

  57. Wolpert D, Diedrichsen J, Flanagan JR (2011) Principles of sensorimotor learning. Nat Rev 12:739. doi:10.1038/nrn3112

    CAS  Google Scholar 

  58. Yágüez L, Nagel D, Hoffman H, Canavan A (1998) A mental route to motor learning: improving trajectorial kinematics through imagery training. Behav Brain 90:95–106. doi:10.1016/S0166-4328(97)00087-9

    Article  Google Scholar 

  59. Yahagi S, Kasai T (1999) Motor evoked potentials induced by motor imagery reveal a functional asymmetry of cortical motor control in left- and right-handed human subjects. Neurosci Lett 276:185–188. doi:10.1016/S0304-3940(99)00823-X

    CAS  Article  PubMed  Google Scholar 

  60. Yue G, Cole KJ (1992) Strength increases from the motor program: comparison of training with maximal voluntary and imagined muscle contractions. J Neurophysiol 67:1114–1123

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Florent Lebon.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ruffino, C., Papaxanthis, C. & Lebon, F. The influence of imagery capacity in motor performance improvement. Exp Brain Res 235, 3049–3057 (2017). https://doi.org/10.1007/s00221-017-5039-8

Download citation

Keywords

  • Motor imagery
  • Mental practice
  • Motor performance improvement
  • Imagery capacity