Skip to main content
Log in

How plastic are human spinal cord motor circuitries?

  • Mini-Review
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Human and animal studies have documented that neural circuitries in the spinal cord show adaptive changes caused by altered supraspinal and/or afferent input to the spinal circuitry in relation to learning, immobilization, injury and neurorehabilitation. Reversible adaptations following, e.g. the acquisition or refinement of a motor skill rely heavily on the functional integration between supraspinal and sensory inputs to the spinal cord networks. Accordingly, what is frequently conceived as a change in the spinal circuitry may be a change in either descending or afferent input or in the relative integration of these, i.e. a change in the neuronal weighting. This is evident from findings documenting only task-specific functional changes after periods of altered inputs whereas resting responses remain unaffected. In fact, the proximity of the spinal circuitry to the outer world may demand a more rigid organization compared to the highly flexible cortical circuits. The understanding of all of this is important for the planning and execution of neurorehabilitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aagaard P, Suetta C, Caserotti P, Magnusson SP, Kjaer M (2010) Role of the nervous system in sarcopenia and muscle atrophy with aging: strength training as a countermeasure. Scand J Med Sci Sports 20:49–64

    Article  CAS  PubMed  Google Scholar 

  • Angeli CA, Edgerton VR, Gerasimenko YP, Harkema SJ (2014) Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans. Brain 137:1394–1409

    Article  PubMed  PubMed Central  Google Scholar 

  • Bernhard CG, Bohm E (1954) Monosynaptic corticospinal activation of fore limb motoneurons in monkeys (Macaca mulatta). Acta Physiol Scand 31:104–112

    Article  CAS  PubMed  Google Scholar 

  • Bunday KL, Perez MA (2012) Motor recovery after spinal cord injury enhanced by strengthening corticospinal synaptic transmission. Curr Biol 22:2355–2361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burke D (1988) Spasticity as an adaptation to pyramidal tract injury. Adv Neurol 47:401–423

    CAS  PubMed  Google Scholar 

  • Cardin V (2016) Effects of aging and adult-onset hearing loss on cortical auditory regions. Front Neurosci 10:199

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen XY, Carp JS, Chen L, Wolpaw JR (2002) Corticospinal tract transection prevents operantly conditioned H-reflex increase in rats. Exp Brain Res 144:88–94

    Article  PubMed  Google Scholar 

  • Chen XY, Chen Y, Chen L, Tennissen AM, Wolpaw JR (2006) Corticospinal tract transection permanently abolishes H-reflex down-conditioning in rats. J Neurotrauma 23:1705–1712

    Article  PubMed  Google Scholar 

  • Christiansen L, Larsen MN, Grey MJ, Nielsen JB, Lundbye-Jensen J (2017) Long-term progressive motor skill training enhances corticospinal excitability for the ipsilateral hemisphere and motor performance of the untrained hand. Eur J Neurosci 45(12):1490–1500

    Article  PubMed  Google Scholar 

  • Clarac F, Barbara JG (2011) The emergence of the “motoneuron concept”: from the early 19th C to the beginning of the 20th C. Brain Res 1409:23–41

    Article  CAS  PubMed  Google Scholar 

  • Courtine G, Gerasimenko Y, van den Brand R, Yew A, Musienko P et al (2009) Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nat Neurosci 12:1333–1342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crone C, Nielsen J (1989) Spinal mechanisms in man contributing to reciprocal inhibition during voluntary dorsiflexion of the foot. J Physiol 416:255–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • deVries HA, Wiswell RA, Romero GT, Heckathorne E (1985) Changes with age in monosynaptic reflexes elicited by mechanical and electrical stimulation. Am J Phys Med 64:71–81

    CAS  PubMed  Google Scholar 

  • Dietz V (2003) Spastic movement disorder: what is the impact of research on clinical practice? J Neurol Neurosurg Psychiatry 74:820–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dietz V, Sinkjaer T (2007) Spastic movement disorder: impaired reflex function and altered muscle mechanics. Lancet Neurol 6:725–733

    Article  PubMed  Google Scholar 

  • Eyre JA, Miller S, Clowry GJ, Conway EA, Watts C (2000) Functional corticospinal projections are established prenatally in the human foetus permitting involvement in the development of spinal motor centres. Brain 123(Pt 1):51–64

    Article  PubMed  Google Scholar 

  • Faist M, Dietz V, Pierrot-Deseilligny E (1996) Modulation, probably presynaptic in origin, of monosynaptic Ia excitation during human gait. Exp Brain Res 109:441–449

    Article  CAS  PubMed  Google Scholar 

  • Fetz EE, Cheney PD (1987) Functional relations between primate motor cortex cells and muscles: fixed and flexible. Ciba Found Symp 132:98–117

    CAS  PubMed  Google Scholar 

  • Geertsen SS, Kjaer M, Pedersen KK, Petersen TH, Perez MA, Nielsen JB (2013) Central common drive to antagonistic ankle muscles in relation to short-term cocontraction training in nondancers and professional ballet dancers. J Appl Physiol 115:1075–1081

    Article  CAS  PubMed  Google Scholar 

  • Geertsen SS, Kirk H, Lorentzen J, Jorsal M, Johansson CB, Nielsen JB (2015) Impaired gait function in adults with cerebral palsy is associated with reduced rapid force generation and increased passive stiffness. Clin Neurophysiol 126(12):2320–2329

    Article  PubMed  Google Scholar 

  • Gracies JM (2005) Pathophysiology of spastic paresis. II: emergence of muscle overactivity. Muscle Nerve 31:552–571

    Article  PubMed  Google Scholar 

  • Grey MJ, Klinge K, Crone C, Lorentzen J, Biering-Sorensen F et al (2008) Post-activation depression of soleus stretch reflexes in healthy and spastic humans. Exp Brain Res 185:189–197

    Article  PubMed  Google Scholar 

  • Harkema S, Gerasimenko Y, Hodes J, Burdick J, Angeli C et al (2011) Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study. Lancet 377:1938–1947

    Article  PubMed  PubMed Central  Google Scholar 

  • Hultborn H, Meunier S, Pierrot-Deseilligny E, Shindo M (1987) Changes in presynaptic inhibition of Ia fibres at the onset of voluntary contraction in man. J Physiol 389:757–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hultborn H, Illert M, Nielsen J, Paul A, Ballegaard M, Wiese H (1996) On the mechanism of the post-activation depression of the H-reflex in human subjects. Exp Brain Res 108:450–462

    Article  CAS  PubMed  Google Scholar 

  • Jensen JL, Marstrand PC, Nielsen JB (2005) Motor skill training and strength training are associated with different plastic changes in the central nervous system. J Appl Physiol 99:1558–1568

    Article  PubMed  Google Scholar 

  • Johansson RS, Hger C, Backstrom L (1992) Somatosensory control of precision grip during unpredictable pulling loads. III. Impairments during digital anesthesia. Exp Brain Res 89:204–213

    Article  CAS  PubMed  Google Scholar 

  • Kido A, Tanaka N, Stein RB (2004) Spinal excitation and inhibition decrease as humans age. Can J Physiol Pharmacol 82:238–248

    Article  CAS  PubMed  Google Scholar 

  • Koceja DM, Mynark RG (2000) Comparison of heteronymous monosynaptic Ia facilitation in young and elderly subjects in supine and standing positions. Int J Neurosci 103:1–17

    Article  CAS  PubMed  Google Scholar 

  • Koceja DM, Burke JR, Kamen G (1991) Organization of segmental reflexes in trained dancers. Int J Sports Med 12:285–289

    Article  CAS  PubMed  Google Scholar 

  • Larsen LH, Jensen T, Christensen MS, Lundbye-Jensen J, Langberg H, Nielsen JB (2016) Changes in corticospinal drive to spinal motoneurons following tablet-based practice of manual dexterity. Physiol Rep 4(2):e12684

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee do K, Ulrich BD (2015) Functioning of peripheral Ia pathways in leg muscles of newly walking toddlers. Hum Mov Sci 40:193–210

    Article  PubMed  Google Scholar 

  • Leonard CT, Hirschfeld H (1995) Myotatic reflex responses of non-disabled children and children with spastic cerebral palsy. Dev Med Child Neurol 37:783–799

    Article  CAS  PubMed  Google Scholar 

  • Leonard CT, Matsumoto T, Diedrich P (1995) Human myotatic reflex development of the lower extremities. Early Hum Dev 43:75–93

    Article  CAS  PubMed  Google Scholar 

  • Leukel C, Taube W, Rittweger J, Gollhofer A, Ducos M et al (2015) Changes in corticospinal transmission following 8 weeks of ankle joint immobilization. Clin Neurophysiol 126:131–139

    Article  PubMed  Google Scholar 

  • Loeb GE (2001) Learning from the spinal cord. J Physiol 533:111–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luebke J, Barbas H, Peters A (2010) Effects of normal aging on prefrontal area 46 in the rhesus monkey. Brain Res Rev 62:212–232

    Article  PubMed  Google Scholar 

  • Luff AR (1998) Age-associated changes in the innervation of muscle fibers and changes in the mechanical properties of motor units. Ann N Y Acad Sci 854:92–101

    Article  CAS  PubMed  Google Scholar 

  • Lundbye-Jensen J, Nielsen JB (2008a) Central nervous adaptations following 1 wk of wrist and hand immobilization. J Appl Physiol 105:139–151

    Article  PubMed  Google Scholar 

  • Lundbye-Jensen J, Nielsen JB (2008b) Immobilization induces changes in presynaptic control of group Ia afferents in healthy humans. J Physiol 586:4121–4135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazzaro N, Nielsen JF, Grey MJ, Sinkjaer T (2007) Decreased contribution from afferent feedback to the soleus muscle during walking in patients with spastic stroke. J Stroke Cerebrovasc Dis 16:135–144

    Article  PubMed  Google Scholar 

  • Meunier S, Kwon J, Russmann H, Ravindran S, Mazzocchio R, Cohen L (2007) Spinal use-dependent plasticity of synaptic transmission in humans after a single cycling session. J Physiol 579:375–388

    Article  CAS  PubMed  Google Scholar 

  • Morita H, Shindo M, Yanagawa S, Yoshida T, Momoi H, Yanagisawa N (1995) Progressive decrease in heteronymous monosynaptic Ia facilitation with human ageing. Exp Brain Res 104:167–170

    Article  CAS  PubMed  Google Scholar 

  • Myklebust BM, Gottlieb GL (1993) Development of the stretch reflex in the newborn: reciprocal excitation and reflex irradiation. Child Dev 64:1036–1045

    Article  CAS  PubMed  Google Scholar 

  • Myklebust BM, Gottlieb GL, Agarwal GC (1986) Stretch reflexes of the normal infant. Dev Med Child Neurol 28:440–449

    Article  CAS  PubMed  Google Scholar 

  • Newton I, Bernoulli D, MacLaurin C, Euler L (1833) Philosophiae naturalis principia mathematica, vol 1. excudit G. Brookman, impensis TT et J. Tegg, Londini

  • Nielsen JB (1998) Co-contraction of antagonistic muscles in man. Dan Med Bull 45:423–435

    CAS  PubMed  Google Scholar 

  • Nielsen J, Crone C, Hultborn H (1993a) H-reflexes are smaller in dancers from The Royal Danish Ballet than in well-trained athletes. Eur J Appl Physiol 66:116–121

    Article  CAS  Google Scholar 

  • Nielsen J, Petersen N, Deuschl G, Ballegaard M (1993b) Task-related changes in the effect of magnetic brain stimulation on spinal neurones in man. J Physiol 471:223–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen J, Petersen N, Crone C (1995) Changes in transmission across synapses of Ia afferents in spastic patients. Brain 118(Pt 4):995–1004

    Article  PubMed  Google Scholar 

  • Nielsen JB, Petersen NT, Crone C, Sinkjaer T (2005) Stretch reflex regulation in healthy subjects and patients with spasticity. Neuromodulation 8:49–57

    Article  PubMed  Google Scholar 

  • Nielsen JB, Crone C, Hultborn H (2007) The spinal pathophysiology of spasticity—from a basic science point of view. Acta Physiol 189:171–180

    Article  CAS  Google Scholar 

  • O’Sullivan MC, Eyre JA, Miller S (1991) Radiation of phasic stretch reflex in biceps brachii to muscles of the arm in man and its restriction during development. J Physiol 439:529–543

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Sullivan MC, Miller S, Ramesh V, Conway E, Gilfillan K et al (1998) Abnormal development of biceps brachii phasic stretch reflex and persistence of short latency heteronymous reflexes from biceps to triceps brachii in spastic cerebral palsy. Brain 121(Pt 12):2381–2395

    Article  PubMed  Google Scholar 

  • Pascual-Leone A, Amedi A, Fregni F, Merabet LB (2005) The plastic human brain cortex. Annu Rev Neurosci 28:377–401

    Article  CAS  PubMed  Google Scholar 

  • Perez MA, Lungholt BK, Nyborg K, Nielsen JB (2004) Motor skill training induces changes in the excitability of the leg cortical area in healthy humans. Exp Brain Res 159:197–205

    Article  PubMed  Google Scholar 

  • Perez MA, Lungholt BK, Nielsen JB (2005) Presynaptic control of group Ia afferents in relation to acquisition of a visuo-motor skill in healthy humans. J Physiol 568:343–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez MA, Lundbye-Jensen J, Nielsen JB (2006) Changes in corticospinal drive to spinal motoneurons following visuo-motor skill learning in humans. J Physiol 573:843–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez MA, Lundbye-Jensen J, Nielsen JB (2007) Task-specific depression of the soleus H-reflex after cocontraction training of antagonistic ankle muscles. J Neurophysiol 98:3677–3687

    Article  PubMed  Google Scholar 

  • Peters A (2007) The effects of normal aging on nerve fibers and neuroglia in the central nervous system. In: Riddle DR (ed) Brain aging: models, methods, and mechanisms. CRC Press/Taylor & Francis, Boca Raton, pp 97–125

    Chapter  Google Scholar 

  • Proske U, Gandevia SC (2012) The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. Physiol Rev 92:1651–1697

    Article  CAS  PubMed  Google Scholar 

  • Sabbahi MA, Sedgwick EM (1982) Age-related changes in monosynaptic reflex excitability. J Gerontol 37:24–32

    Article  CAS  PubMed  Google Scholar 

  • Sugiura M (2016) Functional neuroimaging of normal aging: declining brain, adapting brain. Ageing Res Rev 30:61–72

    Article  PubMed  Google Scholar 

  • Thompson AK, Wolpaw JR (2014) Operant conditioning of spinal reflexes: from basic science to clinical therapy. Front Integr Neurosci 8:25

    PubMed  PubMed Central  Google Scholar 

  • Tsuruike M, Kitano K, Koceja DM, Riley ZA (2012) Differential control of H-reflex amplitude in different weight-bearing conditions in young and elderly subjects. Clin Neurophysiol 123:2018–2024

    Article  PubMed  Google Scholar 

  • Willerslev-Olsen M, Andersen JB, Sinkjaer T, Nielsen JB (2014) Sensory feedback to ankle plantar flexors is not exaggerated during gait in spastic hemiplegic children with cerebral palsy. J Neurophysiol 111:746–754

    Article  PubMed  Google Scholar 

  • Wolpaw JR (2007) Spinal cord plasticity in acquisition and maintenance of motor skills. Acta Physiol 189:155–169

    Article  CAS  Google Scholar 

  • Wolpert DM, Ghahramani Z (2000) Computational principles of movement neuroscience. Nat Neurosci 3(Suppl):1212–1217

    Article  CAS  PubMed  Google Scholar 

  • Zampieri S, Mosole S, Lofler S, Fruhmann H, Burggraf S et al (2015) Physical exercise in aging: nine weeks of leg press or electrical stimulation training in 70 years old sedentary elderly people. Eur J Transl Myol 25:237–242

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Bo Nielsen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christiansen, L., Lundbye-Jensen, J., Perez, M.A. et al. How plastic are human spinal cord motor circuitries?. Exp Brain Res 235, 3243–3249 (2017). https://doi.org/10.1007/s00221-017-5037-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-017-5037-x

Keywords

Navigation