Experimental Brain Research

, Volume 235, Issue 10, pp 3023–3031 | Cite as

Effect of training status on beta-range corticomuscular coherence in agonist vs. antagonist muscles during isometric knee contractions

  • Fabien Dal Maso
  • Marieke Longcamp
  • Sylvain Cremoux
  • David Amarantini
Research Article


Antagonist muscle co-activation is thought to be partially regulated by cortical influences, but direct motor cortex involvement is not fully understood. Corticomuscular coherence (CMC) measures direct functional coupling of the motor cortex and muscles. As antagonist co-activation differs according to training status, comparison of CMC in agonist and antagonist muscles and in strength-trained and endurance-trained individuals may provide in-depth knowledge of cortical implication in antagonist muscle co-activation. Electroencephalographic and electromyographic signals were recorded, while 10 strength-trained and 11 endurance-trained participants performed isometric knee contractions in flexion and extension at various torque levels. CMC magnitude in 13–21 and 21–31 Hz frequency bands was quantified by CMC analysis between Cz electroencephalographic electrode activity and all electromyographic signals. CMC was significant in both 13–21 and 21–31 Hz frequency bands in flexor and extensor muscles regardless of participant group, torque level, and direction of contraction. CMC magnitude decreased more in antagonist than in agonist muscles as torque level increased. Finally, CMC magnitude was higher in strength-trained than in endurance-trained participants. These findings provide experimental evidence that the motor cortex directly regulates both agonist and antagonist muscles. Nevertheless, the mechanisms underlying muscle activation may be specific to their function. Between-group modulation of corticomuscular coherence may result from training-induced adaptation, re-emphasizing that corticomuscular coherence analysis may be efficient in characterizing corticospinal adaptations after long-term muscle specialization.


Co-activation Cortical regulation Primary motor cortex Time–frequency analysis Training-induced adaptation 


Compliance with ethical standards

Conflict of interest

The authors have no conflict of interest to declare.

Supplementary material

221_2017_5035_MOESM1_ESM.docx (629 kb)
Supplementary material 1 (DOCX 628 kb)


  1. Allen DP, MacKinnon CD (2010) Time-frequency analysis of movement-related spectral power in EEG during repetitive movements: a comparison of methods. J Neurosci Methods 186:107–115. doi: 10.1016/j.jneumeth.2009.10.022 CrossRefPubMedGoogle Scholar
  2. Amarantini D, Bru B (2015) Training-related changes in the EMG-moment relationship during isometric contractions: further evidence of improved control of muscle activation in strength-trained men? J Electromyogr Kinesiol 25:697–702. doi: 10.1016/j.jelekin.2015.04.002 CrossRefPubMedGoogle Scholar
  3. Amarantini D, Rao G, Berton E (2010) A two-step EMG-and-optimization process to estimate muscle force during dynamic movement. J Biomech 43:1827–1830. doi: 10.1016/j.jbiomech.2010.02.025 CrossRefPubMedGoogle Scholar
  4. Baker MR, Baker SN (2003) The effect of diazepam on motor cortical oscillations and corticomuscular coherence studied in man. J Physiol 546:931–942CrossRefPubMedGoogle Scholar
  5. Baker SN, Pinches EM, Lemon RN (2003) Synchronization in monkey motor cortex during a precision grip task. II. effect of oscillatory activity on corticospinal output. J Neurophysiol 89:1941–1953. doi: 10.1152/jn.00832.2002 CrossRefPubMedGoogle Scholar
  6. Bayraktaroglu Z, von Carlowitz-Ghori K, Losch F, Nolte G, Curio G, Nikulin VV (2011) Optimal imaging of cortico-muscular coherence through a novel regression technique based on multi-channel EEG and un-rectified EMG. Neuroimage 57:1059–1067. doi: 10.1016/j.neuroimage.2011.04.071 CrossRefPubMedGoogle Scholar
  7. Bigot J, Longcamp M, Dal Maso F, Amarantini D (2011) A new statistical test based on the wavelet cross-spectrum to detect time-frequency dependence between non-stationary signals: application to the analysis of cortico-muscular interactions. Neuroimage 55:1504–1518. doi: 10.1016/j.neuroimage.2011.01.033 CrossRefPubMedGoogle Scholar
  8. Boonstra TW (2013) The potential of corticomuscular and intermuscular coherence for research on human motor control. Front Hum Neurosci 7:855. doi: 10.3389/fnhum.2013.00855 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Boonstra TW, Daffertshofer A, Roerdink M, Flipse I, Groenewoud K, Beek PJ (2009) Bilateral motor unit synchronization of leg muscles during a simple dynamic balance task. Eur J Neurosci 29:613–622. doi: 10.1111/j.1460-9568.2008.06584.x CrossRefPubMedGoogle Scholar
  10. Brown P (2000) Cortical drives to human muscle: the Piper and related rhythms. Prog Neurobiol 60:97–108CrossRefPubMedGoogle Scholar
  11. Buzsaki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304:1926–1929. doi: 10.1126/science.1099745 CrossRefPubMedGoogle Scholar
  12. Campfens SF, Schouten AC, van Putten MJ, van der Kooij H (2013) Quantifying connectivity via efferent and afferent pathways in motor control using coherence measures and joint position perturbations. Exp Brain Res 228:141–153. doi: 10.1007/s00221-013-3545-x CrossRefPubMedGoogle Scholar
  13. Carolan B, Cafarelli E (1992) Adaptations in coactivation after isometric resistance training. J Appl Physiol 73(1985):911–917PubMedGoogle Scholar
  14. Carroll TJ, Riek S, Carson RG (2002) The sites of neural adaptation induced by resistance training in humans. J Physiol 544:641–652CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chapman JP, Chapman LJ, Allen JJ (1987) The measurement of foot preference. Neuropsychologia 25:579–584CrossRefPubMedGoogle Scholar
  16. Charissou C, Vigouroux L, Berton E, Amarantini D (2016) Fatigue- and training-related changes in ‘beta’ intermuscular interactions between agonist muscles. J Electromyogr Kinesiol. doi: 10.1016/j.jelekin.2016.02.002 PubMedGoogle Scholar
  17. Conway BA, Halliday DM, Farmer SF, Shahani U, Maas P, Weir AI, Rosenberg JR (1995) Synchronization between motor cortex and spinal motoneuronal pool during the performance of a maintained motor task in man. J Physiol 489(Pt 3):917–924CrossRefPubMedPubMedCentralGoogle Scholar
  18. Cremoux S, Tallet J, Berton E, Dal Maso F, Amarantini D (2013) Does the force level modulate the cortical activity during isometric contractions after a cervical spinal cord injury? Clin Neurophysiol 124:1005–1012. doi: 10.1016/j.clinph.2012.11.007 CrossRefPubMedGoogle Scholar
  19. Dal Maso F, Longcamp M, Amarantini D (2012) Training-related decrease in antagonist muscles activation is associated with increased motor cortex activation: evidence of central mechanisms for control of antagonist muscles. Exp Brain Res 220:287–295. doi: 10.1007/s00221-012-3137-1 CrossRefGoogle Scholar
  20. De Luca CJ, Erim Z (2002) Common drive in motor units of a synergistic muscle pair. J Neurophysiol 87:2200–2204. doi: 10.1152/jn.00793.2001 CrossRefPubMedGoogle Scholar
  21. De Luca CJ, Mambrito B (1987) Voluntary control of motor units in human antagonist muscles: coactivation and reciprocal activation. J Neurophysiol 58:525–542PubMedGoogle Scholar
  22. Divekar NV, John LR (2013) Neurophysiological, behavioural and perceptual differences between wrist flexion and extension related to sensorimotor monitoring as shown by corticomuscular coherence. Clin Neurophysiol 124:136–147. doi: 10.1016/j.clinph.2012.07.019 CrossRefPubMedGoogle Scholar
  23. Duchateau J, Baudry S (2014) The neural control of coactivation during fatiguing contractions revisited. J Electromyogr Kinesiol 24:780–788. doi: 10.1016/j.jelekin.2014.08.006 CrossRefPubMedGoogle Scholar
  24. Enders H, Nigg BM (2015) Measuring human locomotor control using EMG and EEG: current knowledge, limitations and future considerations. Eur J Sport Sci pp 1–11 doi:  10.1080/17461391.2015.1068869
  25. Engel AK, Fries P (2010) Beta-band oscillations–signalling the status quo? Curr Opin Neurobiol 20:156–165. doi: 10.1016/j.conb.2010.02.015 CrossRefPubMedGoogle Scholar
  26. Falvo MJ, Sirevaag EJ, Rohrbaugh JW, Earhart GM (2010) Resistance training induces supraspinal adaptations: evidence from movement-related cortical potentials. Eur J Appl Physiol 109:923–933. doi: 10.1007/s00421-010-1432-8 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Folland JP, Williams AG (2007) The adaptations to strength training: morphological and neurological contributions to increased strength. Sports Med 37:145–168CrossRefPubMedGoogle Scholar
  28. Gribble PL, Mullin LI, Cothros N, Mattar A (2003) Role of cocontraction in arm movement accuracy. J Neurophysiol 89:2396–2405. doi: 10.1152/jn.01020.2002 CrossRefPubMedGoogle Scholar
  29. Griffin L, Cafarelli E (2005) Resistance training: cortical, spinal, and motor unit adaptations. Can J Appl Physiol 30:328–340CrossRefPubMedGoogle Scholar
  30. Gwin JT, Ferris DP (2012) Beta- and gamma-range human lower limb corticomuscular coherence. Front Hum Neurosci 6:258. doi: 10.3389/fnhum.2012.00258 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hakkinen K, Alen M, Kallinen M, Newton RU, Kraemer WJ (2000) Neuromuscular adaptation during prolonged strength training, detraining and re-strength-training in middle-aged and elderly people. Eur J Appl Physiol 83:51–62. doi: 10.1007/s004210000248 CrossRefPubMedGoogle Scholar
  32. Hansen NL, Nielsen JB (2004) The effect of transcranial magnetic stimulation and peripheral nerve stimulation on corticomuscular coherence in humans. J Physiol 561:295–306. doi: 10.1113/jphysiol.2004.071910 CrossRefPubMedGoogle Scholar
  33. Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G (2000) Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol 10:361–374. doi: 10.1016/S1050-6411(00)00027-4 CrossRefPubMedGoogle Scholar
  34. Joundi RA, Jenkinson N, Brittain JS, Aziz TZ, Brown P (2012) Driving oscillatory activity in the human cortex enhances motor performance. Curr Biol 22:403–407. doi: 10.1016/j.cub.2012.01.024 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kristeva R, Patino L, Omlor W (2007) Beta-range cortical motor spectral power and corticomuscular coherence as a mechanism for effective corticospinal interaction during steady-state motor output. Neuroimage 36:785–792. doi: 10.1016/j.neuroimage.2007.03.025 CrossRefPubMedGoogle Scholar
  36. Lai MI, Pan LL, Tsai MW, Shih YF, Wei SH, Chou LW (2016) Investigating the effects of peripheral electrical stimulation on corticomuscular functional connectivity stroke survivors. Top Stroke Rehabil 23:154–162. doi: 10.1080/10749357.2015.1122264 CrossRefPubMedGoogle Scholar
  37. Larsen LH, Jensen T, Christensen MS, Lundbye-Jensen J, Langberg H, Nielsen JB (2016) Changes in corticospinal drive to spinal motoneurones following tablet-based practice of manual dexterity. Physiol Rep 4:e12684. doi: 10.14814/phy2.12684 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Lemon RN (2008) Descending pathways in motor control. Annu Rev Neurosci 31:195–218. doi: 10.1146/annurev.neuro.31.060407.125547 CrossRefPubMedGoogle Scholar
  39. Levenez M, Kotzamanidis C, Carpentier A, Duchateau J (2005) Spinal reflexes and coactivation of ankle muscles during a submaximal fatiguing contraction. J Appl Physiol 99(1985):1182–1188. doi: 10.1152/japplphysiol.00284.2005 CrossRefPubMedGoogle Scholar
  40. Levenez M, Garland SJ, Klass M, Duchateau J (2008) Cortical and spinal modulation of antagonist coactivation during a submaximal fatiguing contraction in humans. J Neurophysiol 99:554–563. doi: 10.1152/jn.00963.2007 CrossRefPubMedGoogle Scholar
  41. Masakado Y, Nielsen JB (2008) Task-and phase-related changes in cortico-muscular coherence. Keio J Med 57:50–56CrossRefPubMedGoogle Scholar
  42. McClelland VM, Cvetkovic Z, Mills KR (2012) Rectification of the EMG is an unnecessary and inappropriate step in the calculation of Corticomuscular coherence. J Neurosci Methods 205:190–201. doi: 10.1016/j.jneumeth.2011.11.001 CrossRefPubMedGoogle Scholar
  43. Mendez-Balbuena I, Huethe F, Schulte-Monting J, Leonhart R, Manjarrez E, Kristeva R (2012) Corticomuscular coherence reflects interindividual differences in the state of the corticomuscular network during low-level static and dynamic forces. Cereb Cortex 22:628–638. doi: 10.1093/cercor/bhr147 CrossRefPubMedGoogle Scholar
  44. Miller JP, Croce RV, Hutchins R (2000) Reciprocal coactivation patterns of the medial and lateral quadriceps and hamstrings during slow, medium and high speed isokinetic movements. J Electromyogr Kinesiol 10:233–239CrossRefPubMedGoogle Scholar
  45. Mohr M, Nann M, von Tscharner V, Eskofier B, Nigg BM (2015) Task-dependent intermuscular motor unit synchronization between medial and lateral vastii muscles during dynamic and isometric squats. PLoS One 10:e0142048. doi: 10.1371/journal.pone.0142048 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Muthuraman M, Arning K, Govindan RB, Heute U, Deuschl G, Raethjen J (2012) Cortical representation of different motor rhythms during bimanual movements. Exp Brain Res 223:489–504. doi: 10.1007/s00221-012-3276-4 CrossRefPubMedGoogle Scholar
  47. Negro F, Farina D (2011) Linear transmission of cortical oscillations to the neural drive to muscles is mediated by common projections to populations of motoneurons in humans. J Physiol 589:629–637. doi: 10.1113/jphysiol.2010.202473 CrossRefPubMedGoogle Scholar
  48. Negro F, Keenan K, Farina D (2015) Power spectrum of the rectified EMG: when and why is rectification beneficial for identifying neural connectivity? J Neural Eng 12:036008. doi: 10.1088/1741-2560/12/3/036008 CrossRefPubMedGoogle Scholar
  49. Neto OP, Christou EA (2010) Rectification of the EMG signal impairs the identification of oscillatory input to the muscle. J Neurophysiol 103:1093–1103. doi: 10.1152/jn.00792.2009 CrossRefPubMedGoogle Scholar
  50. Nielsen JB (2016) Human spinal motor control. Annu Rev Neurosci 39:81–101. doi: 10.1146/annurev-neuro-070815-013913 CrossRefPubMedGoogle Scholar
  51. Olney SJ, Winter DA (1985) Predictions of knee and ankle moments of force in walking from EMG and kinematic data. J Biomech 18:9–20CrossRefPubMedGoogle Scholar
  52. Perez MA, Lundbye-Jensen J, Nielsen JB (2006) Changes in corticospinal drive to spinal motoneurones following visuo-motor skill learning in humans. J Physiol 573:843–855. doi: 10.1113/jphysiol.2006.105361 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Perez MA, Lundbye-Jensen J, Nielsen JB (2007) Task-specific depression of the soleus H-reflex after cocontraction training of antagonistic ankle muscles. J Neurophysiol 98:3677–3687. doi: 10.1152/jn.00988.2007 CrossRefPubMedGoogle Scholar
  54. Perez MA, Soteropoulos DS, Baker SN (2012) Corticomuscular coherence during bilateral isometric arm voluntary activity in healthy humans. J Neurophysiol 107:2154–2162. doi: 10.1152/jn.00722.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Pohja M, Salenius S (2003) Modulation of cortex-muscle oscillatory interaction by ischaemia-induced deafferentation. NeuroReport 14:321–324. doi: 10.1097/01.wnr.0000058518.74643.96 CrossRefPubMedGoogle Scholar
  56. Poortvliet PC, Tucker KJ, Finnigan S, Scott D, Sowman P, Hodges PW (2015) Cortical activity differs between position- and force-control knee extension tasks. Exp Brain Res 233:3447–3457. doi: 10.1007/s00221-015-4404-8 CrossRefPubMedGoogle Scholar
  57. Psek JA, Cafarelli E (1993) Behavior of coactive muscles during fatigue. J Appl Physiol 74(1985):170–175PubMedGoogle Scholar
  58. Remaud A, Guevel A, Cornu C (2007) Antagonist muscle coactivation and muscle inhibition: effects on external torque regulation and resistance training-induced adaptations. Neurophysiol Clin 37:1–14. doi: 10.1016/j.neucli.2007.01.002 CrossRefPubMedGoogle Scholar
  59. Riddle CN, Baker SN (2005) Manipulation of peripheral neural feedback loops alters human corticomuscular coherence. J Physiol 566:625–639. doi: 10.1113/jphysiol.2005.089607 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Rosenberg JR, Amjad AM, Breeze P, Brillinger DR, Halliday DM (1989) The Fourier approach to the identification of functional coupling between neuronal spike trains. Prog Biophys Mol Biol 53:1–31CrossRefPubMedGoogle Scholar
  61. Schnitzler A, Gross J (2005) Normal and pathological oscillatory communication in the brain. Nat Rev Neurosci 6:285–296. doi: 10.1038/nrn1650 CrossRefPubMedGoogle Scholar
  62. Stokes IA, Gardner-Morse M (2003) Spinal stiffness increases with axial load: another stabilizing consequence of muscle action. J Electromyogr Kinesiol 13:397–402CrossRefPubMedGoogle Scholar
  63. Tillin NA, Pain MT, Folland JP (2011) Short-term unilateral resistance training affects the agonist-antagonist but not the force-agonist activation relationship. Muscle Nerve 43:375–384. doi: 10.1002/mus.21885 CrossRefPubMedGoogle Scholar
  64. Ushiyama J, Takahashi Y, Ushiba J (2010) Muscle dependency of corticomuscular coherence in upper and lower limb muscles and training-related alterations in ballet dancers and weightlifters. J Appl Physiol 109(1985):1086–1095. doi: 10.1152/japplphysiol.00869.2009 CrossRefPubMedGoogle Scholar
  65. Ushiyama J, Masakado Y, Fujiwara T et al (2012) Contraction level-related modulation of corticomuscular coherence differs between the tibialis anterior and soleus muscles in humans. J Appl Physiol 112(1985):1258–1267. doi: 10.1152/japplphysiol.01291.2011 CrossRefPubMedGoogle Scholar
  66. Vila-Chã C, Falla D (2016) Strength training, but not endurance training, reduces motor unit discharge rate variability. J Electromyogr Kinesiol 26:88–93. doi: 10.1016/j.jelekin.2015.10.016 CrossRefPubMedGoogle Scholar
  67. Wang L, Lu A, Zhang S, Niu W, Zheng F, Gong M (2015) Fatigue-related electromyographic coherence and phase synchronization analysis between antagonistic elbow muscles. Exp Brain Res 233:971–982. doi: 10.1007/s00221-014-4172-x CrossRefPubMedGoogle Scholar
  68. Watanabe RN, Kohn AF (2015) Fast oscillatory commands from the motor cortex can be decoded by the spinal cord for force control. J Neurosci 35:13687–13697. doi: 10.1523/jneurosci.1950-15.2015 CrossRefPubMedGoogle Scholar
  69. Williams ER, Baker SN (2009) Renshaw cell recurrent inhibition improves physiological tremor by reducing corticomuscular coupling at 10 Hz. J Neurosci 29:6616–6624. doi: 10.1523/jneurosci.0272-09.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Winslow AT, Brantley J, Zhu F, Contreras Vidal JL, Huang H (2016) Corticomuscular coherence variation throughout the gait cycle during overground walking and ramp ascent: a preliminary investigation. Eng Med Biol Soc 2016:4634–4637. doi: 10.1109/embc.2016.7591760 Google Scholar
  71. Witham CL, Riddle CN, Baker MR, Baker SN (2011) Contributions of descending and ascending pathways to corticomuscular coherence in humans. J Physiol 589:3789–3800. doi: 10.1113/jphysiol.2011.211045 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Cremoux S, Tallet J, Dal Maso F, Berton E, Amarantini D (2017) Impaired corticomuscular coherence during isometric elbow flexion contractions in human with cervical spinal cord injury. Eur J Neurosci. doi: 10.1111/ejn.13641
  73. Yang Y, Solis-Escalante T, van de Ruit M, van der Helm FC, Schouten AC (2016) Nonlinear coupling between cortical oscillations and muscle activity during isotonic wrist flexion. Front Comput Neurosci 10:126. doi: 10.3389/fncom.2016.00126 PubMedPubMedCentralGoogle Scholar
  74. Yao B, Salenius S, Yue GH, Brown RW, Liu JZ (2007) Effects of surface EMG rectification on power and coherence analyses: an EEG and MEG study. J Neurosci Methods 159:215–223. doi: 10.1016/j.jneumeth.2006.07.008 CrossRefPubMedGoogle Scholar
  75. Yoshida T, Masani K, Zabjek K, Chen R, Popovic MR (2017) Dynamic cortical participation during bilateral, cyclical ankle movements: effects of aging. Sci Rep 7:44658. doi: 10.1038/srep44658 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Zhan Y, Halliday D, Jiang P, Liu X, Feng J (2006) Detecting time-dependent coherence between non-stationary electrophysiological signals–a combined statistical and time-frequency approach. J Neurosci Methods 156:322–332. doi: 10.1016/j.jneumeth.2006.02.013 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Département de KinésiologieUniversité de MontréalMontréalCanada
  2. 2.LNC, CNRS-Aix-Marseille UniversitéMarseille Cedex 3France
  3. 3.LAMIH, UMR CNRS 8201Université de Valenciennes et du Hainaut CambrésisValenciennesFrance
  4. 4.Toulouse NeuroImaging CenterUniversité de Toulouse, Inserm, UPSToulouseFrance

Personalised recommendations