Skip to main content
Log in

Sex differences in spatial accuracy relate to the neural activation of antagonistic muscles in young adults

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Sex is an important physiological variable of behavior, but its effect on motor control remains poorly understood. Some evidence suggests that women exhibit greater variability during constant contractions and poorer accuracy during goal-directed tasks. However, it remains unclear whether motor output variability or altered muscle activation impairs accuracy in women. Here, we examine sex differences in endpoint accuracy during ankle goal-directed movements and the activity of the antagonistic muscles. Ten women (23.1 ± 5.1 years) and 10 men (23 ± 3.7 years) aimed to match a target (9° in 180 ms) with ankle dorsiflexion. Participants performed 50 trials and we recorded the endpoint accuracy and the electromyographic (EMG) activity of the primary agonist (Tibialis Anterior; TA) and antagonist (Soleus; SOL) muscles. Women exhibited greater spatial inaccuracy (Position error: t = −2.65, P = 0.016) but not temporal inaccuracy relative to men. The motor output variability was similar for the two sexes (P > 0.2). The spatial inaccuracy in women was related to greater variability in the coordination of the antagonistic muscles (R 2 0.19, P = 0.03). These findings suggest that women are spatially less accurate than men during fast goal-directed movements likely due to an altered activation of the antagonistic muscles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CV:

Coefficient of variation

EMG:

Electromyography

MVC:

Maximal voluntary contraction

SOL:

Soleus

TA:

Tibialis anterior

References

  • Almeida GL, Hong DA, Corcos D, Gottlieb GL (1995) Organizing principles for voluntary movement: extending single-joint rules. J Neurophysiol 74:1374–1381

    CAS  PubMed  Google Scholar 

  • Almuklass AM, Price RC, Gould JR, Enoka RM (2016) Force steadiness as a predictor of time to complete a pegboard test of dexterity in young men and women. J Appl Physiol 120:1410–1417

    Article  PubMed  Google Scholar 

  • Beery AK, Zucker I (2011) Sex bias in neuroscience and biomedical research. Neurosci Biobehav Rev 35:565–572

    Article  PubMed  Google Scholar 

  • Bell EC, Willson MC, Wilman AH, Dave S, Silverstone PH (2006) Males and females differ in brain activation during cognitive tasks. Neuroimage 30:529–538

    Article  PubMed  Google Scholar 

  • Brown RE, Edwards DL, Jakobi JM (2010) Sex differences in force steadiness in three positions of the forearm. Eur J Appl Physiol 110:1251–1257

    Article  PubMed  Google Scholar 

  • Casamento-Moran A, Chen Y-T, Kwon M, Snyder A, Subramony SH, Vaillancourt DE, Christou EA (2015) Force dysmetria in spinocerebellar ataxia 6 correlates with functional capacity. Front Hum Neurosci 9:1–7

    Article  Google Scholar 

  • Chen Y-T, Kwon M, Fox EJ, Christou EA (2014) Altered activation of the antagonist muscle during practice compromises motor learning in older adults. J Neurophysiol 112:1010–1019

    Article  PubMed  PubMed Central  Google Scholar 

  • Christou EA, Jakobi JM, Critchlow A, Fleshner M, Enoka RM (2004) The 1- to 2-Hz oscillations in muscle force are exacerbated by stress, especially in older adults. J Appl Physiol 97:225–235

    Article  PubMed  Google Scholar 

  • Christou EA, Poston B, Enoka JA, Enoka RM (2007) Different neural adjustments improve endpoint accuracy with practice in young and old adults. J Neurophysiol 97:3340–3350

    Article  PubMed  Google Scholar 

  • Clint EK, Sober E, Garland T, Rhodes JS (2012) Male superiority in spatial navigation: adaptation or side effect? Q Rev Biol 87:289–313

    Article  PubMed  Google Scholar 

  • De Bellis MD, Keshavan MS, Beers SR, Hall J, Frustaci K, Masalehdan A, Noll J, Boring AM (2001) Sex differences in brain maturation during childhood and adolescence. Cereb Cortex 11:552–557

    Article  PubMed  Google Scholar 

  • Duff SJ, Hampson E (2001) A sex difference on a novel spatial working memory task in humans. Brain Cogn 47:470–493

    Article  CAS  PubMed  Google Scholar 

  • Elias LJ, Bryden MP (1998) Footedness is a better predictor of language lateralisation than handedness. Laterality 3:41–51

    Article  CAS  PubMed  Google Scholar 

  • Ellermeier W, Westphal W (1995) Gender differences in pain ratings and pupil reactions to painful pressure stimuli. Pain 61:435–439

    Article  CAS  PubMed  Google Scholar 

  • Emery K, Côté JN (2012) Repetitive arm motion-induced fatigue affects shoulder but not endpoint position sense. Exp Brain Res 216:553–564

    Article  PubMed  Google Scholar 

  • Endo H, Kawahara K (2011) Gender differences in hand stability of normal young people assessed at low force levels. Ergonomics 54:273–281

    Article  PubMed  Google Scholar 

  • Estes Z, Felker S (2012) Confidence mediates the sex difference in mental rotation performance. Arch Sex Behav 41:557–570

    Article  PubMed  Google Scholar 

  • Falconer K, Winter DA (1985) Quantitative assessment of co-contraction at the ankle joint in walking. Electromyogr Clin Neurophysiol 25:135–149

    CAS  PubMed  Google Scholar 

  • Fedorowich L, Emery K, Gervasi B, Côté JN (2013) Gender differences in neck/shoulder muscular patterns in response to repetitive motion induced fatigue. J Electromyogr Kinesiol 23:1183–1189

    Article  PubMed  Google Scholar 

  • Feine JS, Bushnell MC, Miron D, Duncan GH (1991) Sex differences in the perception of noxious heat stimuli. Pain 44:255–262

    Article  CAS  PubMed  Google Scholar 

  • Fox EJ, Moon H, Kwon M, Chen Y-T, Christou EA (2014) Neuromuscular control of goal-directed ankle movements differs for healthy children and adults. Eur J Appl Physiol 114:1889–1899

    Article  PubMed  Google Scholar 

  • Fuller CM, Insel PA (2014) I don’t know the question, but sex is definitely the answer! Focus on “In pursuit of scientific excellence: sex matters” and “Do you know the sex of your cells?”. Am J Physiol Cell Physiol 306:C1–C2

    Article  CAS  PubMed  Google Scholar 

  • Girard-Tremblay L, Auclair V, Daigle K, Léonard G, Whittingstall K, Goffaux P (2014) Sex differences in the neural representation of pain unpleasantness. J Pain 15:867–877

    Article  PubMed  Google Scholar 

  • Gottlieb GL, Latash ML, Corcos DM, Liubinskas TJ, Agarwal GC (1992) Organizing principles for single joint movements: V. Agonist-antagonist interactions. J Neurophysiol 67:1417–1427

    CAS  PubMed  Google Scholar 

  • Gottlieb GL, Song Q, Hong DA, Corcos DM (1996) Coordinating two degrees of freedom during human arm movement: load and speed invariance of relative joint torques. J Neurophysiol 76:3196–3206

    CAS  PubMed  Google Scholar 

  • Green SB, Salkind NJ (2010) Using SPSS for windows and macintosh: analyzing and understanding data. Prentice Hall Press

  • Gribble PL, Mullin LI, Cothros N, Mattar A (2003) Role of cocontraction in arm movement accuracy. J Neurophysiol 89:2396–2405

    Article  PubMed  Google Scholar 

  • Harwood B, Edwards DL, Jakobi JM (2008) Age- and sex-related differences in muscle activation for a discrete functional task. Eur J Appl Physiol 103:677–686

    Article  CAS  PubMed  Google Scholar 

  • Hunter SK (2016) The relevance of sex differences in performance fatigability. Med Sci Sports Exerc 48:2247–2256

    Article  PubMed  Google Scholar 

  • Ives JC, Kroll WP, Bultman LL (1993) Rapid movement kinematic and electromyographic control characteristics in males and females. Res Q Exerc Sport 64:274–283

    Article  CAS  PubMed  Google Scholar 

  • Kano M, Farmer AD, Aziz Q, Giampietro VP, Brammer MJ, Williams SCR, Fukudo S, Coen SJ (2013) Sex differences in brain response to anticipated and experienced visceral pain in healthy subjects. Am J Physiol Gastrointest Liver Physiol 304:G687–G699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keller-Ross ML, Pereira HM, Pruse J, Yoon T, Schlinder-Delap B, Nielson KA, Hunter SK (2014) Stressor-induced increase in muscle fatigability of young men and women is predicted by strength but not voluntary activation. J Appl Physiol 116:767–778

    Article  PubMed  PubMed Central  Google Scholar 

  • Koolschijn PCMP, Crone EA (2013) Sex differences and structural brain maturation from childhood to early adulthood. Dev Cogn Neurosci 5:106–118

    Article  PubMed  Google Scholar 

  • Kwon M, Chen Y-T, Fox EJ, Christou EA (2014) Aging and limb alter the neuromuscular control of goal-directed movements. Exp Brain Res 232:1759–1771

    Article  PubMed  Google Scholar 

  • Labrenz F, Icenhour A, Thürling M, Schlamann M, Forsting M, Timmann D, Elsenbruch S (2015) Sex differences in cerebellar mechanisms involved in pain-related safety learning. Neurobiol Learn Mem 123:92–99

    Article  PubMed  Google Scholar 

  • Lautenbacher S, Rollman GB (1993) Sex differences in responsiveness to painful and non-painful stimuli are dependent upon the stimulation method. Pain 53:255–264

    Article  CAS  PubMed  Google Scholar 

  • Lautenbacher S, Strian F (1991) Sex differences in pain and thermal sensitivity: the role of body size. Percept Psychophys 50:179–183

    Article  CAS  PubMed  Google Scholar 

  • Lejbak L, Vrbancic M, Crossley M (2009) The female advantage in object location memory is robust to verbalizability and mode of presentation of test stimuli. Brain Cogn 69:148–153

    Article  PubMed  Google Scholar 

  • Linn MC, Petersen AC (1985) Emergence and characterization of sex differences in spatial ability: a meta-analysis. Child Dev 56:1479–1498

    Article  CAS  PubMed  Google Scholar 

  • Lissek S, Hausmann M, Knossalla F, Peters S, Nicolas V, Güntürkün O, Tegenthoff M (2007) Sex differences in cortical and subcortical recruitment during simple and complex motor control: an fMRI study. Neuroimage 37:912–926

    Article  PubMed  Google Scholar 

  • Lomond KV, Côté JN (2010) Movement timing and reach to reach variability during a repetitive reaching task in persons with chronic neck/shoulder pain and healthy subjects. Exp Brain Res 206:271–282

    Article  PubMed  Google Scholar 

  • Lowery D, Fillingim RB, Wright RA (2003) Sex differences and incentive effects on perceptual and cardiovascular responses to cold pressor pain. Psychosom Med 65:284–291

    Article  PubMed  Google Scholar 

  • MacLusky N, Naftolin F (1981) Sexual differentiation of the central nervous system. Science (80-.) 211:1294–1302

    Article  CAS  Google Scholar 

  • Malinowski JC (2001) Mental rotation and real-world wayfinding. Percept Mot Skills 92:19–30

    Article  CAS  PubMed  Google Scholar 

  • Mapplebeck JCS, Beggs S, Salter MW (2016) Sex differences in pain: a tale of two immune cells. Pain 157(Suppl):S2–S6

    Article  PubMed  Google Scholar 

  • Messing K, Stock S, Côté J, Tissot F (2014) Is sitting worse than static standing? How a gender analysis can move us toward understanding determinants and effects of occupational standing and walking. J Occup Environ Hyg 9624:D11–D17

    Google Scholar 

  • Miller VM (2012) In pursuit of scientific excellence: sex matters. Am J Physiol Endocrinol Metab 302:E1025–E1026

    Article  CAS  PubMed  Google Scholar 

  • Miller VM (2014) Why are sex and gender important to basic physiology and translational and individualized medicine? Am J Physiol Heart Circ Physiol 306:H781–H788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno-Briseño P, Díaz R, Campos-Romo A, Fernandez-Ruiz J (2010) Sex-related differences in motor learning and performance. Behav Brain Funct 6:74

    Article  PubMed  PubMed Central  Google Scholar 

  • Nahman-Averbuch H, Dayan L, Sprecher E, Hochberg U, Brill S, Yarnitsky D, Jacob G (2016) Sex differences in the relationships between parasympathetic activity and pain modulation. Physiol Behav 154:40–48

    Article  CAS  PubMed  Google Scholar 

  • Nazareth A, Herrera A, Pruden SM (2013) Explaining sex differences in mental rotation: role of spatial activity experience. Cogn Process 14:201–204

    Article  PubMed  Google Scholar 

  • Nedelec B, Dion K, Correa JA, Desrosiers J (2011) Upper extremity performance test for the elderly (TEMPA): normative data for young adults. J Hand Ther 24:31–43

    Article  PubMed  Google Scholar 

  • Noteboom JT, Fleshner M, Enoka RM (2001) Activation of the arousal response can impair performance on a simple motor task. J Appl Physiol 91:821–831

    CAS  PubMed  Google Scholar 

  • Paulson PE, Minoshima S, Morrow TJ, Casey KL (1998) Gender differences in pain perception and patterns of cerebral activation during noxious heat stimulation in humans. Pain 76:223–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira HM, Spears VC, Schlinder-Delap B, Yoon T, Nielson KA, Hunter SK (2015) Age and sex differences in steadiness of elbow flexor muscles with imposed cognitive demand. Eur J Appl Physiol 115:1367–1379

    Article  PubMed  PubMed Central  Google Scholar 

  • Peters M, Laeng B, Latham K, Jackson M, Zaiyouna R, Richardson C (1995) A redrawn Vandenberg and Kuse mental rotations test: different versions and factors that affect performance. Brain Cogn 28:39–58

    Article  CAS  PubMed  Google Scholar 

  • Postma A, Jager G, Kessels RPC, Koppeschaar HPF, Van Honk J (2004) Sex differences for selective forms of spatial memory. Brain Cogn 54:24–34

    Article  PubMed  Google Scholar 

  • Poston B, Enoka JA, Enoka RM (2008) Practice and endpoint accuracy with the left and right hands of old adults: the right-hemisphere aging model. Muscle Nerve 37:376–386

    Article  PubMed  Google Scholar 

  • Roalf DR, Gur RE, Ruparel K, Calkins ME, Satterthwaite TD, Bilker WB, Hakonarson H, Harris LJ, Gur RC (2014) Within-individual variability in neurocognitive performance: age- and sex-related differences in children and youths from ages 8 to 21. Neuropsychology 28:506–518

    Article  PubMed  PubMed Central  Google Scholar 

  • Satterthwaite TD, Wolf DH, Roalf DR, Ruparel K, Erus G, Vandekar S, Gennatas ED, Elliott MA, Smith A, Hakonarson H, Verma R, Davatzikos C, Gur RE, Gur RC (2015) Linked sex differences in cognition and functional connectivity in youth. Cereb Cortex 25:2383–2394

    Article  PubMed  Google Scholar 

  • Sneider JT, Hamilton DA, Cohen-Gilbert JE, Crowley DJ, Rosso IM, Silveri MM (2015) Sex differences in spatial navigation and perception in human adolescents and emerging adults. Behav Process 111:42–50

    Article  Google Scholar 

  • Sun Y, Lee R, Chen Y, Collinson S, Thakor N, Bezerianos A, Sim K (2015) Progressive gender differences of structural brain networks in healthy adults: a longitudinal, diffusion tensor imaging study. PLoS ONE 10:e0118857

    Article  PubMed  PubMed Central  Google Scholar 

  • Vafadar AK, Côté JN, Archambault PS (2015) Sex differences in the shoulder joint position sense acuity: a cross-sectional study. BMC Musculoskelet Disord 16:273

    Article  PubMed  PubMed Central  Google Scholar 

  • Vaillancourt DE, Haibach PS, Newell KM (2006) Visual angle is the critical variable mediating gain-related effects in manual control. Exp Brain Res 173:742–750

    Article  PubMed  PubMed Central  Google Scholar 

  • Vanden Noven ML, Pereira HM, Yoon T, Stevens AA, Nielson KA, Hunter SK (2014) Motor variability during sustained contractions increases with cognitive demand in older adults. Front Aging Neurosci 6:97

    Article  PubMed  PubMed Central  Google Scholar 

  • Voyer D, Voyer S, Bryden MP (1995) Magnitude of sex differences in spatial abilities: a meta-analysis and consideration of critical variables. Psychol Bull 117:250–270

    Article  CAS  PubMed  Google Scholar 

  • Watson NV, Kimura D (1991) Nontrivial sex differences in throwing and intercepting: relation to psychometrically-defined spatial functions. Pers Individ Dif 12:375–385

    Article  Google Scholar 

  • Yoon T, Keller ML, De-Lap BS, Harkins A, Lepers R, Hunter SK (2009) Sex differences in response to cognitive stress during a fatiguing contraction. J Appl Physiol 107:1486–1496

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evangelos A. Christou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casamento-Moran, A., Hunter, S.K., Chen, YT. et al. Sex differences in spatial accuracy relate to the neural activation of antagonistic muscles in young adults. Exp Brain Res 235, 2425–2436 (2017). https://doi.org/10.1007/s00221-017-4968-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-017-4968-6

Keywords

Navigation