Experimental Brain Research

, Volume 235, Issue 2, pp 389–400 | Cite as

Variability in spatio-temporal pattern of trapezius activity and coordination of hand-arm muscles during a sustained repetitive dynamic task

  • Afshin SamaniEmail author
  • Divya Srinivasan
  • Svend Erik Mathiassen
  • Pascal Madeleine
Research Article


The spatio-temporal distribution of muscle activity has been suggested to be a determinant of fatigue development. Pursuing this hypothesis, we investigated the pattern of muscular activity in the shoulder and arm during a repetitive dynamic task performed until participants’ rating of perceived exertion reached 8 on Borg’s CR-10 scale. We collected high-density surface electromyogram (HD-EMG) over the upper trapezius, as well as bipolar EMG from biceps brachii, triceps brachii, deltoideus anterior, serratus anterior, upper and lower trapezius from 21 healthy women. Root-mean-square (RMS) and mean power frequency (MNF) were calculated for all EMG signals. The barycenter of RMS values over the HD-EMG grid was also determined, as well as normalized mutual information (NMI) for each pair of muscles. Cycle-to-cycle variability of these metrics was also assessed. With time, EMG RMS increased for most of the muscles, and MNF decreased. Trapezius activity became higher on the lateral side than on the medial side of the HD-EMG grid and the barycenter moved in a lateral direction. NMI between muscle pairs increased with time while its variability decreased. The variability of the metrics during the initial 10 % of task performance was not associated with the time to task termination. Our results suggest that the considerable variability in force and posture contained in the dynamic task per se masks any possible effects of differences between subjects in initial motor variability on the rate of fatigue development.


Fatigue development High-density electromyogram Functional connectivity 



The study was partly supported by grants from The Ministry of Culture Committee on Sports Research in Denmark, The Danish Rheumatism Association and the Swedish Research Council for Health, Working Life and Welfare (Forte Dnr 2011-0075).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no personal or financial relationship which may influence their work.


  1. Bao S, Mathiassen SE, Winkel J (1995) Normalizing upper trapezius EMG amplitude: comparison of different procedures. J Electromyogr Kinesiol 5:251–257. doi: 10.1016/1050-6411(95)00011-9 CrossRefPubMedGoogle Scholar
  2. Billaut F, Basset FA, Falgairette G (2005) Muscle coordination changes during intermittent cycling sprints. Neurosci Lett 380:265–269. doi: 10.1016/j.neulet.2005.01.048 CrossRefPubMedGoogle Scholar
  3. Borg GA (1982) Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14:377–381. doi: 10.1249/00005768-198205000-00012 PubMedGoogle Scholar
  4. Bosch T, Mathiassen SE, Hallman D, de Looze M, Lyskov E, Visser B, van Dieën J (2012) Temporal strategy and performance during a fatiguing short-cycle repetitive task. Ergonomics 55:863–873. doi: 10.1080/00140139.2012.682739 CrossRefPubMedGoogle Scholar
  5. Côté JN (2012) A critical review on physical factors and functional characteristics that may explain a sex/gender difference in work-related neck/shoulder disorders. Ergonomics 55:173–182. doi: 10.1080/00140139.2011.586061 CrossRefPubMedGoogle Scholar
  6. Côté JN, Mathieu PA, Levin MF, Feldman AG (2002) Movement reorganization to compensate for fatigue during sawing. Exp Brain Res 146:394–398. doi: 10.1007/s00221-002-1186-6 CrossRefPubMedGoogle Scholar
  7. De Luca CJ (1997) The use of surface electromyography in biomechanics. J Appl Biomech 13:135–163. doi: 10.1123/jab.13.2.135 CrossRefGoogle Scholar
  8. Ekstrom RA, Bifulco KM, Lopau CJ, Andersen CF, Gough JR (2004) Comparing the function of the upper and lower parts of the serratus anterior muscle using surface electromyography. J Orthop Sports Phys Ther 34:235–243. doi: 10.2519/jospt.2004.34.5.235 CrossRefPubMedGoogle Scholar
  9. Enoka RM, Duchateau J (2008) Muscle fatigue: what, why and how it influences muscle function. J Physiol (Lond) 586:11–23. doi: 10.1113/jphysiol.2007.139477 CrossRefGoogle Scholar
  10. Enoka RM, Duchateau J (2016) Translating fatigue to human performance. Med Sci Sports Exerc. doi: 10.1249/MSS.0000000000000929 Google Scholar
  11. Falla D, Farina D (2007) Periodic increases in force during sustained contraction reduce fatigue and facilitate spatial redistribution of trapezius muscle activity. Exp Brain Res 182:99–107. doi: 10.1007/s00221-007-0974-4 CrossRefPubMedGoogle Scholar
  12. Farina D, Madeleine P, Graven-Nielsen T, Merletti R, Arendt-Nielsen L (2002) Standardising surface electromyogram recordings for assessment of activity and fatigue in the human upper trapezius muscle. Eur J Appl Physiol 86:469–478. doi: 10.1007/s00421-001-0574-0 CrossRefPubMedGoogle Scholar
  13. Farina D, Leclerc F, Arendt-Nielsen L, Buttelli O, Madeleine P (2008) The change in spatial distribution of upper trapezius muscle activity is correlated to contraction duration. J Electromyogr Kinesiol 18:16–25. doi: 10.1016/j.jelekin.2006.08.005 CrossRefPubMedGoogle Scholar
  14. Farina D, Merletti R, Enoka RM (2014) The extraction of neural strategies from the surface EMG: an update. J Appl Physiol 117:1215–1230. doi: 10.1152/japplphysiol.00162.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Fedorowich L, Emery K, Gervasi B, Côté JN (2013) Gender differences in neck/shoulder muscular patterns in response to repetitive motion induced fatigue. J Electromyogr Kinesiol 23:1183–1189. doi: 10.1016/j.jelekin.2013.06.005 CrossRefPubMedGoogle Scholar
  16. Fuller JR, Lomond KV, Fung J, Côté JN (2009) Posture-movement changes following repetitive motion-induced shoulder muscle fatigue. J Electromyogr Kinesiol 19:1043–1052. doi: 10.1016/j.jelekin.2008.10.009 CrossRefPubMedGoogle Scholar
  17. Gallina A, Merletti R, Gazzoni M (2013) Uneven spatial distribution of surface EMG: What does it mean? Eur J Appl Physiol 113:887–894. doi: 10.1007/s00421-012-2498-2 CrossRefPubMedGoogle Scholar
  18. Gates DH, Dingwell JB (2010) Muscle fatigue does not lead to increased instability of upper extremity repetitive movements. J Biomech 43:913–919. doi: 10.1016/j.jbiomech.2009.11.001 CrossRefPubMedGoogle Scholar
  19. Gonzalez RC, Woods RE, Eddins SL (2004) Digital image processing using MATLAB. Prentice Hall, Upper Saddle RiverGoogle Scholar
  20. Grondin DE, Potvin JR (2009) Effects of trunk muscle fatigue and load timing on spinal responses during sudden hand loading. J Electromyogr Kinesiol 19:e237–e245. doi: 10.1016/j.jelekin.2008.05.006 CrossRefPubMedGoogle Scholar
  21. Grönlund C, Roeleveld K, Holtermann A, Karlsson JS (2005) On-line signal quality estimation of multichannel surface electromyograms. Med Biol Eng Comput 43:357–364. doi: 10.1007/bf02345813 CrossRefPubMedGoogle Scholar
  22. Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G (2000) Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol 10:361–374. doi: 10.1016/S1050-6411(00)00027-4 CrossRefPubMedGoogle Scholar
  23. Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70Google Scholar
  24. Hunter SK, Duchateau J, Enoka RM (2004) Muscle fatigue and the mechanisms of task failure. Exerc Sport Sci Rev 32:44–49. doi: 10.1097/00003677-200404000-00002 CrossRefPubMedGoogle Scholar
  25. Inman VT, Saunders JB, Abbott LC (1944) Observations of the function of the shoulder joint. Clin Orthop Relat Res 330:3–12. doi: 10.1097/00003086-199609000-00002 CrossRefGoogle Scholar
  26. Jeong J, Gore JC, Peterson BS (2001) Mutual information analysis of the EEG in patients with Alzheimer’s disease. Clin Neurophysiol 112:827–835. doi: 10.1016/s1388-2457(01)00513-2 CrossRefPubMedGoogle Scholar
  27. Kawczyński A, Samani A, Mroczek D, Chmura P, Błach W, Migasiewicz J, Klich S, Chmura J, Madeleine P (2015) Functional connectivity between core and shoulder muscles increases during isometric endurance contractions in judo competitors. Eur J Appl Physiol 115:1351–1358. doi: 10.1007/s00421-015-3114-z CrossRefPubMedGoogle Scholar
  28. Kleine BU, Schumann NP, Stegeman DF, Scholle HC (2000) Surface EMG mapping of the human trapezius muscle: the topography of monopolar and bipolar surface EMG amplitude and spectrum parameters at varied forces and in fatigue. Clin Neurophysiol 111:686–693. doi: 10.1016/s1388-2457(99)00306-5 CrossRefPubMedGoogle Scholar
  29. Kuchinad R, Ivanova T, Garland S (2004) Modulation of motor unit discharge rate and H-reflex amplitude during submaximal fatigue of the human soleus muscle. Exp Brain Res 158:345–355. doi: 10.1007/s00221-004-1907-0 CrossRefPubMedGoogle Scholar
  30. Lapatki BG, Van Dijk JP, Jonas IE, Zwarts MJ, Stegeman DF (2004) A thin, flexible multielectrode grid for high-density surface EMG. J Appl Physiol 96:327–336. doi: 10.1152/japplphysiol.00521.2003 CrossRefPubMedGoogle Scholar
  31. Lindman R, Eriksson Q, Thornell L (1991) Fiber type composition of the human female trapezius muscle. Am J Anat 190:385–392. doi: 10.1002/aja.1001900406 CrossRefPubMedGoogle Scholar
  32. Madeleine P (2010) On functional motor adaptations: from the quantification of motor strategies to the prevention of musculoskeletal disorders in the neck–shoulder region. Acta Physiol 199:1–46. doi: 10.1111/j.1748-1716.2010.02145.x CrossRefGoogle Scholar
  33. Madeleine P, Leclerc F, Arendt-Nielsen L, Ravier P, Farina D (2006) Experimental muscle pain changes the spatial distribution of upper trapezius muscle activity during sustained contraction. Clin Neurophysiol 117:2436–2445. doi: 10.1016/j.clinph.2006.06.753 CrossRefPubMedGoogle Scholar
  34. Madeleine P, Samani A, Binderup AT, Stensdotter AK (2011) Changes in the spatio-temporal organization of the trapezius muscle activity in response to eccentric contractions. Scand J Med Sci Sports 21:277–286. doi: 10.1111/j.1600-0838.2009.01037 CrossRefPubMedGoogle Scholar
  35. Madeleine P, Hansen EA, Samani A (2014) Linear and nonlinear analyses of multi-channel mechanomyographic recordings reveal heterogeneous activation of wrist extensors in presence of delayed onset muscle soreness. Med Eng Phys 36:1656–1664. doi: 10.1016/j.medengphy.2014.09.003 CrossRefPubMedGoogle Scholar
  36. Mathiassen SE (2006) Diversity and variation in biomechanical exposure: What is it, and why would we like to know? Appl Ergon 37:419–427. doi: 10.1016/j.apergo.2006.04.006 CrossRefPubMedGoogle Scholar
  37. Mathiassen SE, Åhsberg E (1999) Prediction of shoulder flexion endurance from personal factors. Int J Ind Ergonomics 24:315–329. doi: 10.1016/s0169-8141(98)00039-0 CrossRefGoogle Scholar
  38. Mathiassen S, Aminoff T (1997) Motor control and cardiovascular responses during isoelectric contractions of the upper trapezius muscle: evidence for individual adaptation strategies. Eur J Appl Physiol Occup Physiol 76:434–444. doi: 10.1007/s004210050273 CrossRefPubMedGoogle Scholar
  39. Mathiassen SE, Winkel J (1996) Physiological comparison of three interventions in light assembly work: reduced work pace, increased break allowance and shortened working days. Int Arch Occup Environ Health 68:94–108. doi: 10.1007/bf00381241 CrossRefPubMedGoogle Scholar
  40. Mathiassen SE, Winkel J, Hägg GM (1995) Normalization of surface EMG amplitude from the upper trapezius muscle in ergonomic studies. J Electromyogr Kinesiol 5:197–226. doi: 10.1016/1050-6411(94)00014-x CrossRefPubMedGoogle Scholar
  41. Maynard H (1948) Method-time-measurement (MTM). McGraw-Hill, PensilvaniaGoogle Scholar
  42. Mesin L, Smith S, Hugo S, Viljoen S, Hanekom T (2009) Effect of spatial filtering on crosstalk reduction in surface EMG recordings. Med Eng Phys 31:374–383. doi: 10.1016/j.medengphy.2008.05.006 CrossRefPubMedGoogle Scholar
  43. Missenard O, Mottet D, Perrey S (2008) The role of cocontraction in the impairment of movement accuracy with fatigue. Exp Brain Res 185:151–156. doi: 10.1007/s00221-007-1264-x CrossRefPubMedGoogle Scholar
  44. Nieminen H, Takala E, Niemi J, Viikari-Juntura E (1995) Muscular synergy in the shoulder during a fatiguing static contraction. Clin Biomech 10:309–317. doi: 10.1016/0268-0033(95)00041-i CrossRefGoogle Scholar
  45. Nordander C, Willner J, Hansson GÅ, Larsson B, Unge J, Granquist L, Skerfving S (2003) Influence of the subcutaneous fat layer, as measured by ultrasound, skinfold calipers and BMI, on the EMG amplitude. Eur J Appl Physiol 89:514–519. doi: 10.1007/s00421-003-0819-1 CrossRefPubMedGoogle Scholar
  46. Nordander C, Balogh I, Mathiassen SE, Ohlsson K, Unge J, Skerfving S, Hansson GÅ (2004) Precision of measurements of physical workload during standardised manual handling. Part I: surface electromyography of m. trapezius, m. infraspinatus and the forearm extensors. J Electromyogr Kinesiol 14:443–454. doi: 10.1016/j.jelekin.2003.12.003 CrossRefPubMedGoogle Scholar
  47. Rempel DM, Harrison RJ, Barnhart S (1992) Work-related cumulative trauma disorders of the upper extremity. JAMA 267:838–842. doi: 10.1001/jama.267.6.838 CrossRefPubMedGoogle Scholar
  48. Rojas-Martínez M, Mañanas MA, Alonso JF (2012) High-density surface EMG maps from upper-arm and forearm muscles. J Neuroeng Rehabil 9:85. doi: 10.1186/1743-0003-9-85 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Samani A, Pontonnier C, Dumont G, Madeleine P (2015a) Shoulder kinematics and spatial pattern of trapezius electromyographic activity in real and virtual environments. PLoS One 10:e0116211. doi: 10.1371/journal.pone.0116211 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Samani A, Srinivasan D, Mathiassen SE, Madeleine P (2015b) Nonlinear metrics assessing motor variability during repetitive arm movements: between-and within-subject variance components. J Electromyogr Kinesiol 25:557–564. doi: 10.1016/j.jelekin.2015.01.005 CrossRefPubMedGoogle Scholar
  51. Srinivasan D, Mathiassen SE (2012) Motor variability in occupational health and performance. Clin Biomech 27:979–993. doi: 10.1016/j.clinbiomech.2012.08.007 CrossRefGoogle Scholar
  52. Srinivasan D, Rudolfsson T, Mathiassen SE (2015a) Between- and within-subject variance of motor variability metrics in females performing repetitive upper-extremity precision work. J Electromyogr Kinesiol 25:121–129. doi: 10.1016/j.jelekin.2014.10.011 CrossRefPubMedGoogle Scholar
  53. Srinivasan D, Mathiassen SE, Samani A, Madeleine P (2015b) The combined influence of task accuracy and pace on motor variability in a standardised repetitive precision task. Ergonomics 58:1388–1397. doi: 10.1080/00140139.2015.1005174 CrossRefPubMedGoogle Scholar
  54. Srinivasan D, Mathiassen SE, Hallman DM, Samani A, Madeleine P, Lyskov E (2016) Effects of concurrent physical and cognitive demands on muscle activity and heart rate variability in a repetitive upper-extremity precision task. Eur J Appl Physiol 116:227–239. doi: 10.1007/s00421-015-3268-8 CrossRefPubMedGoogle Scholar
  55. Strang AJ, Berg WP (2007) Fatigue-induced adaptive changes of anticipatory postural adjustments. Exp Brain Res 178:49–61. doi: 10.1007/s00221-006-0710-5 CrossRefPubMedGoogle Scholar
  56. van Dieën JH, Oude Vrielink HHE, Toussaint HM (1993) An investigation into the relevance of the pattern of temporal activation with respect to erector spinae muscle endurance. Eur J Appl Physiol Occup Physiol 66:70–75. doi: 10.1007/bf00863403 CrossRefPubMedGoogle Scholar
  57. Visser B, van Dieën JH (2006) Pathophysiology of upper extremity muscle disorders. J Electromyogr Kinesiol 16:1–16. doi: 10.1016/j.jelekin.2005.06.005 CrossRefPubMedGoogle Scholar
  58. Westad C, Westgaard RH, Luca CJD (2003) Motor unit recruitment and derecruitment induced by brief increase in contraction amplitude of the human trapezius muscle. J Physiol (Lond) 552:645–656. doi: 10.1111/j.1469-7793.2003.00645.x CrossRefGoogle Scholar
  59. Westgaard RH, De Luca CJ (1999) Motor unit substitution in long-duration contractions of the human trapezius muscle. J Neurophysiol 82:501–504PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Afshin Samani
    • 1
    Email author
  • Divya Srinivasan
    • 2
    • 3
  • Svend Erik Mathiassen
    • 3
  • Pascal Madeleine
    • 1
  1. 1.Laboratory for Ergonomics and Work-related Disorders, Physical Activity and Human Performance Group - SMI, Department of Health Science and TechnologyAalborg UniversityAalborg EastDenmark
  2. 2.Department of Industrial and Systems EngineeringVirginia Polytechnic Institute and State UniversityBlacksburgUSA
  3. 3.Centre for Musculoskeletal Research, Department of Occupational and Public Health Sciences, Faculty of Health and Occupational StudiesUniversity of GävleGävleSweden

Personalised recommendations