Skip to main content
Log in

Sensitivity of the avian motion system to light and dark stimuli

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Global motion perception is important for mobile organisms. In laterally eyed birds, global motion appears to be processed in the entopallium, a neural structure that is part of the tectofugal pathway. Electrophysiological research has shown that motion selective cells in the entopallium are most responsive to small dark moving targets. Here, we investigated whether this bias toward dark targets of entopallial cells is mirrored by perceptual performance in a motion detection task in pigeons. We measured the detection thresholds of pigeons using random dot stimuli that consisted of either black or white dots on a gray background. We found that thresholds were significantly lower when using black dots as opposed to white dots. This heightened sensitivity is also noted in the learning rates of the pigeons. That is, we found that the pigeons learned the detection task significantly faster when the stimuli consisted of black dots. We believe that our results have important implications for the understanding of the functional role of the entopallium and the ON and OFF pathways in the avian motion system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Balasubramanian V, Sterling P (2009) Receptive fields and functional architecture in the retina. J Physiol 587:2753–2767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baron J, Pinto L, Dias MO, Lima B, Neuenschwander S (2007) Directional responses of visual wulst neurones to grating and plaid patterns in the awake owl. Eur J Neurosci 26:1950–1968

    Article  PubMed  Google Scholar 

  • Bischof WE, Reid SL, Wylie DR, Spetch ML (1999) Perception of coherent motion in random dot displays by pigeons and humans. Percept Psychophys 61:1089–1101

    Article  CAS  PubMed  Google Scholar 

  • Burr D, Thompson P (2011) Motion psychophysics: 1985–2010. Vision Res 51(1431):1456

    Google Scholar 

  • Cook RG, Katz JS (1999) Dynamic object perception by pigeons. J Exp Psychol Anim Behav Proc 25:194–210

    Article  CAS  Google Scholar 

  • Cook RG, Murphy MS (2012) Avian visual processing of motion and objects. In: Lazareva OF, Shimizu T, Wasserman EA (eds) How animals see the world: behavior, biology, and evolution of vision. Oxford University Press, London, pp 271–288

    Google Scholar 

  • Dittrich WH, Lea SE, Barrett J, Gurr PR (1998) Categorization of natural movements by pigeons: Visual concept discrimination and biological motion. J Exp Anal Behav 70:281–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards M, Badcock DR (1994) Global motion perception: interaction of the ON and OFF pathways. Vis res 34:2849–2858

    Article  CAS  PubMed  Google Scholar 

  • Engelage J, Bischof HJ (1993) The organization of the tectofugal pathway in birds: a comparative review. In: Zeigler HP, Bischof HJ (eds) Vision, brain, and behavior in birds. MIT Press, Cambridge, pp 137–158

    Google Scholar 

  • Fu YX, Xiao Q, Gao HF, Wang SR (1998) Stimulus features eliciting visual responses from neurons in the nucleus lentiformis mesencephali in pigeons. Vis Neurosci 15:1079–1087

    Article  CAS  PubMed  Google Scholar 

  • Gu Y, Wang Y, Zhang T, Wang SR (2002) Stimulus size selectivity and receptive field organization of ectostriatal neurons in the pigeon. J Comp Physiol A 188:173–178

    Article  Google Scholar 

  • Hendricks J (1966) Flickerthresholds as determined by a modified conditioned suppression procedure. J Exp Anal Behav 9:501–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarvis JR, Taylor NR, Prescott NB, Meeks I, Wathes CM (2002) Measuring and modelling the photopic flicker sensitivity of the chicken (Gallus g. domesticus). Vision Res 42:99–106

    Article  PubMed  Google Scholar 

  • Jin J, Wang Y, Lashgari R, Swadlow HA, Alonso JM (2011) Faster thalamocortical processing for dark than light visual targets. J Neurosci 31:17471–17479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karten HJ, Hodos W (1970) Telencephalic projections of the nucleus rotundus in the pigeon (Columba livia). J Comp Neurol 140:35–51

    Article  CAS  PubMed  Google Scholar 

  • Karten HJ, Revzin AM (1966) The afferent connections of the nucleus rotundus in the pigeon. Brain Res 2:368–377

    Article  CAS  PubMed  Google Scholar 

  • Köhler W (1940) Dynamics in psychology. Liveright Publishing Corp, New York

    Google Scholar 

  • Komban SJ, Alonso JM, Zaidi Q (2011) Darks are processed faster than lights. J Neurosci 31:8654–8658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lazareva OF, Shimizu T, Wasserman EA (2012) How animals see the world: behavior, biology, and evolution of vision. Oxford University Press, London

    Book  Google Scholar 

  • Lu ZL, Sperling G (2012) Black–white asymmetry in visual perception. J Vis 12:8

    Article  PubMed  PubMed Central  Google Scholar 

  • Morrone MC, Burr DC, Vaina LM (1995) Two stages of visual processing for radial and circular motion. Nature 376:507

    Article  CAS  PubMed  Google Scholar 

  • Morrone MC, Burr DC, Di Pietro S, Stefanelli MA (1999) Cardinal directions for visual optic flow. Curr Biol 9:763–766

    Article  CAS  PubMed  Google Scholar 

  • Nakayama K (1985) Biological image motion processing: a review. Vision Res 25:625–660

    Article  CAS  PubMed  Google Scholar 

  • Nankoo J-F, Madan CR, Spetch ML, Wylie DR (2014) Perception of complex motion in humans and pigeons (Columba livia). Exp Brain Res 232:1843–1853

    Article  PubMed  Google Scholar 

  • Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313

    Article  Google Scholar 

  • Nguyen AP, Spetch ML, Crowder NA, Winship IR, Hurd PL, Wylie DR (2004) A dissociation of motion and spatial-pattern vision in the avian telencephalon: implications for the evolution of “visual streams”. J Neurosci 24:4962–4970

    Article  CAS  PubMed  Google Scholar 

  • Nishida SY (2011) Advancement of motion psychophysics: review 2001–2010. J Vis 11:11

    Article  PubMed  Google Scholar 

  • Ratliff CP, Borghuis BG, Kao YH, Sterling P, Balasubramanian V (2010) Retina is structured to process an excess of darkness in natural scenes. Proc Natl Acad Sci USA 107:17368–17373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reymond L (1985) Spatial visual acuity of the eagle Aquila audax: a behavioural, optical and anatomical investigation. Vision Res 25:1477–1491

    Article  CAS  PubMed  Google Scholar 

  • Rubene D, Håstad O, Tauson R, Wall H, Ödeen A (2010) The presence of UV wavelengths improves the temporal resolution of the avian visual system. J Exp Biol 213:3357–3363

    Article  PubMed  Google Scholar 

  • Scase MO, Braddick OJ, Raymond JE (1996) What is noise for the motion system? Vision Res 36:2579–2586

    Article  CAS  PubMed  Google Scholar 

  • Schiller PH (1995) The ON and OFF channels of the mammalian visual system. Prog Retin Eye Res 15:173–195

    Article  Google Scholar 

  • Shimizu T, Watanabe S (2012) The avian visual system: overview. In: Lazareva OF, Shimizu T, Wasserman EA (eds) How animals see the world: behavior, biology, and evolution of vision. Oxford University Press, London, pp 473–482

    Chapter  Google Scholar 

  • Spetch ML, Friedman A, Vuong QC (2006) Dynamic object recognition in pigeons and humans. Learn Behav 34:215–228

    Article  PubMed  Google Scholar 

  • Wang Y, Gu Y, Wang SR (2000) Feature detection of visual neurons in the nucleus of the basal optic root in pigeons. ‎Brain Res Bull 15:165–169

    Article  Google Scholar 

  • Weibull W (1951) A statistical distribution function of wide applicability. J Appl Mech 13:293–297

    Google Scholar 

  • Xing D, Yeh CI, Shapley RM (2010) Generation of black-dominant responses in V1 cortex. J Neurosci 30:13504–13512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Li X, Wang SR (2002) Receptive field organization and response properties of visual neurons in the pigeon nucleus semilunaris. Neurosci Lett 331:179–182

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Isaac Lank, Jeffrey Pisklak and Jason Long for their help with technical issues and for running the pigeons in the experiments. This research was supported by Grants from the National Science and Engineering Research Council (NSERC) of Canada to M. L. S. and D. R. W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Nankoo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nankoo, JF., Madan, C.R., Spetch, M.L. et al. Sensitivity of the avian motion system to light and dark stimuli. Exp Brain Res 235, 401–406 (2017). https://doi.org/10.1007/s00221-016-4786-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-016-4786-2

Keywords

Navigation