Experimental Brain Research

, Volume 235, Issue 1, pp 109–120 | Cite as

Real-time visual feedback of COM and COP motion properties differentially modifies postural control structures

  • Melissa C. Kilby
  • Peter C. M. Molenaar
  • Semyon M. Slobounov
  • Karl M. Newell
Research Article
  • 346 Downloads

Abstract

The experiment was setup to investigate the control of human quiet standing through the manipulation of augmented visual information feedback of selective properties of the motion of two primary variables in postural control: center of pressure (COP) and center of mass (COM). Five properties of feedback information were contrasted to a no feedback dual-task (watching a movie) control condition to determine the impact of visual real-time feedback on the coordination of the joint motions in postural control in both static and dynamic one-leg standing postures. The feedback information included 2D COP or COM position and macro variables derived from the COP and COM motions, namely virtual time-to-contact (VTC) and the COP–COM coupling. The findings in the static condition showed that the VTC and COP–COM coupling feedback conditions decreased postural motion more than the 2D COP or COM positional information. These variables also induced larger sway amplitudes in the dynamic condition showing a more progressive search strategy in exploring the stability limits. Canonical correlation analysis (CCA) found that COP–COM coupling contributed less than the other feedback variables to the redundancy of the system reflected in the common variance between joint motions and properties of sway motion. The COP–COM coupling had the lowest weighting of the motion properties to redundancy under the feedback conditions but overall the qualitative pattern of the joint motion structures was preserved within the respective static and dynamic balance conditions.

Keywords

Postural control Visual feedback Center of pressure Center of mass Virtual time-to-contact Collective variable 

References

  1. Bernstein NA (1967) The co-ordination and regulation of movements. Pergamon Press, New YorkGoogle Scholar
  2. Brillinger DR (1975) Time series: data analysis and theory. Holt, Rinehart & Winston, New YorkGoogle Scholar
  3. Creath R, Kiemel T, Horak F, Peterka R, Jeka J (2005) A unified view of quiet and perturbed stance: simultaneous co-existing excitable modes. Neurosci Lett 377:75–80. doi:10.1016/j.neulet.2004.11.071 CrossRefPubMedGoogle Scholar
  4. Danna-Dos-Santos A, Degani AM, Zatsiorsky VM, Latash ML (2008) Is voluntary control of natural postural sway possible? J Mot Behav 40:179–185. doi:10.3200/JMBR.40.3.179-185 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Dijkstra T, Schöner G, Gielen C (1994) Temporal stability of the action-perception cycle for postural control in a moving visual environment. Exp Brain Res 97:477–486CrossRefPubMedGoogle Scholar
  6. Donker SF, Roerdink M, Greven AJ, Beek PJ (2007) Regularity of center-of-pressure trajectories depends on the amount of attention invested in postural control. Exp Brain Res 181:1–11CrossRefPubMedPubMedCentralGoogle Scholar
  7. Duarte M, Zatsiorsky VM (2002) Effects of body lean and visual information on the equilibrium maintenance during stance. Exp Brain Res 146:60–69. doi:10.1007/s00221-002-1154-1 CrossRefPubMedGoogle Scholar
  8. Edwards A (1946) Body sway and vision. J Exp Psychol 36:526CrossRefPubMedGoogle Scholar
  9. Faugloire E, Bardy BG, Merhi O, Stoffregen TA (2005) Exploring coordination dynamics of the postural system with real-time visual feedback. Neurosci Lett 374:136–141. doi:10.1016/j.neulet.2004.10.043 CrossRefPubMedGoogle Scholar
  10. Freides D (1974) Human information processing and sensory modality: cross-modal functions, information complexity, memory, and deficit. Psychol Bull 81:284. doi:10.1037/h0036331 CrossRefPubMedGoogle Scholar
  11. Freitas SMSF, Duarte M (2012) Joint coordination in young and older adults during quiet stance: effect of visual feedback of the center of pressure. Gait Posture 35:83–87. doi:10.1016/j.gaitpost.2011.08.011 CrossRefPubMedGoogle Scholar
  12. Goldie P, Bach T, Evans O (1989) Force platform measures for evaluating postural control: reliability and validity. Arch Phys Med Rehabil 70:510–517PubMedGoogle Scholar
  13. Haddad JM, Gagnon JL, Hasson CJ, Van Emmerik RE, Hamill J (2006) Evaluation of time-to-contact measures for assessing postural stability. J Appl Biomech 22:155–161CrossRefPubMedGoogle Scholar
  14. Haibach PS, Slobounov SM, Slobounova ES, Newell KM (2007) Virtual time-to-contact of postural stability boundaries as a function of support surface compliance. Exp Brain Res 177:471–482. doi:10.1007/s00221-006-0703-4 CrossRefPubMedGoogle Scholar
  15. Haken H (2006) Information and self-organization: a macroscopic approach to complex systems. Springer Science & Business Media, HeidelbergGoogle Scholar
  16. Hillman CH, Rosengren KS, Smith DP (2004) Emotion and motivated behavior: postural adjustments to affective picture viewing. Biol Psychol 66:51–62. doi:10.1016/j.biopsycho.2003.07.005 CrossRefPubMedGoogle Scholar
  17. Hof A, Gazendam M, Sinke W (2005) The condition for dynamic stability. J Biomech 38:1–8. doi:10.1016/j.jbiomech.2004.03.025 CrossRefPubMedGoogle Scholar
  18. Horak FB, Nashner LM (1986) Central programming of postural movements: adaptation to altered support-surface configurations. J Neurophysiol 55:1369–1381PubMedGoogle Scholar
  19. Hsu WL, Scholz JP, Schoner G, Jeka JJ, Kiemel T (2007) Control and estimation of posture during quiet stance depends on multijoint coordination. J Neurophysiol 97:3024–3035. doi:10.1152/jn.01142.2006 CrossRefPubMedGoogle Scholar
  20. Huxhold O, Li S-C, Schmiedek F, Lindenberger U (2006) Dual-tasking postural control: aging and the effects of cognitive demand in conjunction with focus of attention. Brain Res Bull 69:294–305. doi:10.1016/j.brainresbull.2006.01.002 CrossRefPubMedGoogle Scholar
  21. Kelso J (1995) The self-organization of brain and behavior. MIT Press, CambridgeGoogle Scholar
  22. Kennedy MW, Crowell CR, Striegel AD, Villano M, Schmiedeler JP (2013) Relative efficacy of various strategies for visual feedback in standing balance activities. Exp Brain Res 230:117–125. doi:10.1007/s00221-013-3634-x CrossRefPubMedGoogle Scholar
  23. Kilby MC, Slobounov SM, Newell KM (2014) Postural instability detection: aging and the complexity of spatial-temporal distributional patterns for virtually contacting the stability boundary in human stance. PLoS One 9:e108905. doi:10.1371/journal.pone.0108905 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kilby MC, Molenaar PC, Newell KM (2015) Models of postural control: shared variance in joint and COM motions. PLoS One 10:e0126379. doi:10.1371/journal.pone.0126379 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kilby MC, Slobounov SM, Newell KM (2016) Augmented feedback of COM and COP modulates the regulation of quiet human standing relative to the stability boundary. Gait Posture 47:18–23CrossRefPubMedGoogle Scholar
  26. Kinsella-Shaw JM, Harrison SJ, Turvey M (2011) Interleg coordination in quiet standing: influence of age and visual environment on noise and stability. J Mot Behav 43:285–294CrossRefPubMedGoogle Scholar
  27. Ko JH, Challis JH, Newell KM (2014) Transition of COM–COP relative phase in a dynamic balance task. Hum Mov Sci 38:1–14. doi:10.1016/j.humov.2014.08.005 CrossRefPubMedGoogle Scholar
  28. Lee D, Lishman JR (1975) Visual proprioceptive control of stance. J Human Mov Stud 1(2):87–95Google Scholar
  29. Lobo I (2008) Biological complexity and integrative levels of organization. Nat Educ 1:141. doi:10.1126/science.101.2618.209 Google Scholar
  30. Mason PH (2015) Degeneracy: demystifying and destigmatizing a core concept in systems biology. Complexity 20:12–21. doi:10.1002/cplx.21534 CrossRefGoogle Scholar
  31. Mitra S, Amazeen PG, Turvey MT (1998) Intermediate motor learning as decreasing active (dynamical) degrees of freedom. Hum Mov Sci 17:17–65. doi:10.1016/S0167-9457(97)00023-7 CrossRefGoogle Scholar
  32. Murnaghan C, Horslen B, Inglis J, Carpenter M (2011) Exploratory behavior during stance persists with visual feedback. Neuroscience 195:54–59. doi:10.1016/j.neuroscience.2011.08.020 CrossRefPubMedGoogle Scholar
  33. Nashner L (1989) Sensory, neuromuscular, and biomechanical contributions to human balance. In: Balance: Proceedings of the APTA Forum, Nashville, Tennessee, vol 512Google Scholar
  34. Newell K, Carlton MJ (1987) Augmented information and the acquisition of isometric tasks. J Mot Behav 19:4–12. doi:10.1080/00222895.1987.10735397 CrossRefPubMedGoogle Scholar
  35. Noble R, Smith EP, Ye K (2004) Model selection in canonical correlation analysis (CCA) using Bayesian model averaging. Environmetrics 15:291–311. doi:10.1002/env.641 CrossRefGoogle Scholar
  36. Pei L, Li H, Fu Y, Yang Y, Li J (2013) Influences of visual feedback indicator scales on human upright postural control. Trans Inst Meas Control 35:883–892CrossRefGoogle Scholar
  37. Radhakrishnan SM, Hatzitaki V, Vogiannou A, Tzovaras D (2010) The role of visual cues in the acquisition and transfer of a voluntary postural sway task. Gait Posture 32:650–655CrossRefPubMedGoogle Scholar
  38. Riccio GE, Stoffregen TA (1988) Affordances as constraints on the control of stance. Hum Mov Sci 7:265–300CrossRefGoogle Scholar
  39. Slobounov S, Newell K (1994) Postural dynamics as a function of skill level and task constraints. Gait Posture 2:85–93CrossRefGoogle Scholar
  40. Slobounov SM, Slobounova ES, Newell KM (1997) Virtual time-to-collision and human postural control. J Mot Behav 29:263–281. doi:10.1080/00222899709600841 CrossRefPubMedGoogle Scholar
  41. Slobounov S, Wu T, Hallett M, Shibasaki H, Slobounov E, Newell K (2006) Neural underpinning of postural responses to visual field motion. Biol Psychol 72:188–197. doi:10.1016/j.biopsycho.2005.10.005 CrossRefPubMedGoogle Scholar
  42. Stoffregen TA, Pagulayan RJ, BtG Bardy, Hettinger LJ (2000) Modulating postural control to facilitate visual performance. Hum Mov Sci 19:203–220CrossRefGoogle Scholar
  43. Teasdale N, Simoneau M (2001) Attentional demands for postural control: the effects of aging and sensory reintegration. Gait Posture 14:203–210. doi:10.1016/S0966-6362(01)00134-5 CrossRefPubMedGoogle Scholar
  44. Travis RC (1945) An experimental analysis of dynamic and static equilibrium. J Exp Psychol 35:216CrossRefGoogle Scholar
  45. Vuillerme N, Bertrand R, Pinsault N (2008) Postural effects of the scaled display of visual foot center of pressure feedback under different somatosensory conditions at the foot and the ankle. Arch Phys Med Rehabil 89:2034–2036. doi:10.1016/j.apmr.2008.03.017 CrossRefPubMedGoogle Scholar
  46. Wade MG, Jones G (1997) The role of vision and spatial orientation in the maintenance of posture. Phys Ther 77:619–628PubMedGoogle Scholar
  47. Walker C, Brouwer BJ, Culham EG (2000) Use of visual feedback in retraining balance following acute stroke. Phys Ther 80:886–895PubMedGoogle Scholar
  48. Wang Z, Ko JH, Challis JH, Newell KM (2014) The degrees of freedom problem in human standing posture: collective and component dynamics. PLoS One 9:e85414. doi:10.1371/journal.pone.0085414 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Whitacre JM (2010) Degeneracy: a link between evolvability, robustness and complexity in biological systems. Theor Biol Med Model 7:6CrossRefPubMedPubMedCentralGoogle Scholar
  50. Winter DA, Prince F, Frank JS, Powell C, Zabjek KF (1996) Unified theory regarding A/P and M/L balance in quiet stance. J Neurophysiol 75:2334–2343PubMedGoogle Scholar
  51. Wulf G (2007) Attention and motor skill learning. In: Human Kinetics p 211Google Scholar
  52. Young W, Ferguson S, Brault S, Craig C (2011) Assessing and training standing balance in older adults: a novel approach using the ‘Nintendo Wii’Balance Board. Gait Posture 33:303–305. doi:10.1016/j.gaitpost.2010.10.089 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Melissa C. Kilby
    • 1
  • Peter C. M. Molenaar
    • 2
  • Semyon M. Slobounov
    • 3
  • Karl M. Newell
    • 1
  1. 1.Department of KinesiologyThe University of GeorgiaAthensUSA
  2. 2.Department of Human Development and Family StudiesThe Pennsylvania State UniversityUniversity ParkUSA
  3. 3.Department of KinesiologyThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations