Experimental Brain Research

, Volume 234, Issue 12, pp 3677–3687 | Cite as

Hand-independent representation of tool-use pantomimes in the left anterior intraparietal cortex

Research Article

Abstract

Previous neuropsychological studies of ideomotor apraxia (IMA) indicated impairments in pantomime actions for tool use for both right and left hands following lesions of parieto-premotor cortices in the left hemisphere. Using functional magnetic resonance imaging (fMRI) with multi-voxel pattern analysis (MVPA), we tested the hypothesis that the left parieto-premotor cortices are involved in the storage or retrieval of hand-independent representation of tool-use actions. In the fMRI scanner, one of three kinds of tools was displayed in pictures or letters, and the participants made pantomimes of the use of these tools using the right hand for the picture stimuli or with the left hand for the letters. We then used MVPA to classify which kind of tool the subjects were pantomiming. Whole-brain searchlight analysis revealed successful decoding using the activities largely in the contralateral primary sensorimotor region, ipsilateral cerebellum, and bilateral early visual area, which may reflect differences in low-level sensorimotor components for three types of pantomimes. Furthermore, a successful cross-classification between the right and left hands was possible using the activities of the left inferior parietal lobule (IPL) near the junction of the anterior intraparietal sulcus. Our finding indicates that the left anterior intraparietal cortex plays an important role in the production of tool-use pantomimes in a hand-independent manner, and independent of stimuli modality.

Keywords

fMRI Multi-voxel pattern analysis Tool use Pantomime Anterior intraparietal cortex 

References

  1. Almeida J, Fintzi AR, Mahon BZ (2013) Tool manipulation knowledge is retrieved by way of the ventral visual object processing pathway. Cortex 49:2334–2344CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bartels A, Logothetis NK, Moutoussis K (2008) fMRI and its interpretations: an illustration on directional selectivity in area V5/MT. Trends Neurosci 31:444–453CrossRefPubMedGoogle Scholar
  3. Bianchi M, Cosseddu M, Cotelli M et al (2015) Left parietal cortex transcranial direct current stimulation enhances gesture processing in corticobasal syndrome. Eur J Neurol 22:1317–1322CrossRefPubMedGoogle Scholar
  4. Binkofski F, Buxbaum LJ (2013) Two action systems in the human brain. Brain Lang 127:222–229CrossRefPubMedGoogle Scholar
  5. Bolognini N, Convento S, Banco E, Mattioli F, Tesio L, Vallar G (2015) Improving ideomotor limb apraxia by electrical stimulation of the left posterior parietal cortex. Brain 138:428–439CrossRefPubMedGoogle Scholar
  6. Boronat CB, Buxbaum LJ, Coslett HB, Tang K, Saffran EM, Kimberg DY, Detre JA (2005) Distinctions between manipulation and function knowledge of objects: evidence from functional magnetic resonance imaging. Brain Res Cognit Brain Res 23:361–373CrossRefGoogle Scholar
  7. Bracci S, Cavina-Pratesi C, Connolly JD, Ietswaart M (2016) Representational content of occipitotemporal and parietal tool areas. Neuropsychologia 84:81–88CrossRefPubMedGoogle Scholar
  8. Brandi ML, Wohlschlager A, Sorg C, Hermsdorfer J (2014) The neural correlates of planning and executing actual tool use. J Neurosci 34:13183–13194CrossRefPubMedGoogle Scholar
  9. Buxbaum LJ (2001) Ideomotor apraxia: a call to action. Neurocase 7:445–458CrossRefPubMedGoogle Scholar
  10. Buxbaum LJ, Kyle K, Grossman M, Coslett HB (2007) Left inferior parietal representations for skilled hand-object interactions: evidence from stroke and corticobasal degeneration. Cortex 43:411–423CrossRefPubMedGoogle Scholar
  11. Chao LL, Martin A (2000) Representation of manipulable man-made objects in the dorsal stream. Neuroimage 12:478–484CrossRefPubMedGoogle Scholar
  12. Chao LL, Haxby JV, Martin A (1999) Attribute-based neural substrates in temporal cortex for perceiving and knowing about objects. Nat Neurosci 2:913–919CrossRefPubMedGoogle Scholar
  13. Chen Q, Garcea FE, Mahon BZ (2016) The representation of object-directed action and function knowledge in the human brain. Cereb Cortex 26:1609–1618CrossRefPubMedGoogle Scholar
  14. Choi SH, Na DL, Kang E, Lee KM, Lee SW, Na DG (2001) Functional magnetic resonance imaging during pantomiming tool-use gestures. Exp Brain Res 139:311–317CrossRefPubMedGoogle Scholar
  15. Denes G, Mantovan MC, Gallana A, Cappelletti JY (1998) Limb-kinetic apraxia. Mov Disord 13:468–476CrossRefPubMedGoogle Scholar
  16. Donkervoort M, Dekker J, van den Ende E, Stehmann-Saris JC, Deelman BG (2000) Prevalence of apraxia among patients with a first left hemisphere stroke in rehabilitation centres and nursing homes. Clin Rehabil 14:130–136CrossRefPubMedGoogle Scholar
  17. Fridman EA, Immisch I, Hanakawa T et al (2005) The role of the dorsal stream for gesture production. Neuroimage 29:417–428CrossRefPubMedGoogle Scholar
  18. Gallivan JP, McLean DA, Flanagan JR, Culham JC (2013) Where one hand meets the other: limb-specific and action-dependent movement plans decoded from preparatory signals in single human frontoparietal brain areas. J Neurosci 33:1991–2008CrossRefPubMedGoogle Scholar
  19. Garcea FE, Mahon BZ (2014) Parcellation of left parietal tool representations by functional connectivity. Neuropsychologia 60:131–143CrossRefPubMedPubMedCentralGoogle Scholar
  20. Garcea FE, Almeida J, Mahon BZ (2012) A right visual field advantage for visual processing of manipulable objects. Cognit Affect Behav Neurosci 12:813–825CrossRefGoogle Scholar
  21. Garcea FE, Kristensen S, Almeida J, Mahon BZ (2016) Resilience to the contralateral visual field bias as a window into object representations. Cortex 81:14–23CrossRefPubMedGoogle Scholar
  22. Gardner JL (2010) Is cortical vasculature functionally organized? Neuroimage 49:1953–1956CrossRefPubMedGoogle Scholar
  23. Goldenberg G (2009) Apraxia and the parietal lobes. Neuropsychologia 47:1449–1459CrossRefPubMedGoogle Scholar
  24. Goldenberg G, Hermsdorfer J, Glindemann R, Rorden C, Karnath HO (2007) Pantomime of tool use depends on integrity of left inferior frontal cortex. Cereb Cortex 17:2769–2776CrossRefPubMedGoogle Scholar
  25. Grefkes C, Fink GR (2005) The functional organization of the intraparietal sulcus in humans and monkeys. J Anat 207:3–17CrossRefPubMedPubMedCentralGoogle Scholar
  26. Grefkes C, Weiss PH, Zilles K, Fink GR (2002) Crossmodal processing of object features in human anterior intraparietal cortex: an fMRI study implies equivalencies between humans and monkeys. Neuron 35:173–184CrossRefPubMedGoogle Scholar
  27. Haaland KY, Harrington DL, Knight RT (1999) Spatial deficits in ideomotor limb apraxia. A kinematic analysis of aiming movements. Brain 122(Pt 6):1169–1182CrossRefPubMedGoogle Scholar
  28. Haaland KY, Harrington DL, Knight RT (2000) Neural representations of skilled movement. Brain 123(Pt 11):2306–2313CrossRefPubMedGoogle Scholar
  29. Hamilton AF, Grafton ST (2006) Goal representation in human anterior intraparietal sulcus. J Neurosci 26:1133–1137CrossRefPubMedGoogle Scholar
  30. Hatta T, Nakatsuka Z (1975) Handedness inventry. In: Ohno D (ed) Papers on celebrating 63rd birthday of Prof. Ohnishi. Osaka City University, Osaka, pp 224–245Google Scholar
  31. Haynes JD, Rees G (2005) Predicting the orientation of invisible stimuli from activity in human primary visual cortex. Nat Neurosci 8:686–691CrossRefPubMedGoogle Scholar
  32. Heilman KM, Rothi LJ, Valenstein E (1982) Two forms of ideomotor apraxia. Neurology 32:342–346PubMedGoogle Scholar
  33. Hermsdorfer J, Terlinden G, Muhlau M, Goldenberg G, Wohlschlager AM (2007) Neural representations of pantomimed and actual tool use: evidence from an event-related fMRI study. Neuroimage 36(Suppl 2):T109–T118CrossRefPubMedGoogle Scholar
  34. Hoeren M, Kummerer D, Bormann T et al (2014) Neural bases of imitation and pantomime in acute stroke patients: distinct streams for praxis. Brain 137:2796–2810CrossRefPubMedGoogle Scholar
  35. Imazu S, Sugio T, Tanaka S, Inui T (2007) Differences between actual and imagined usage of chopsticks: an fMRI study. Cortex 43:301–307CrossRefPubMedGoogle Scholar
  36. Ishibashi R, Lambon Ralph MA, Saito S, Pobric G (2011) Different roles of lateral anterior temporal lobe and inferior parietal lobule in coding function and manipulation tool knowledge: evidence from an rTMS study. Neuropsychologia 49:1128–1135CrossRefPubMedGoogle Scholar
  37. Jacobs S, Danielmeier C, Frey SH (2010) Human anterior intraparietal and ventral premotor cortices support representations of grasping with the hand or a novel tool. J Cognit Neurosci 22:2594–2608CrossRefGoogle Scholar
  38. Johnson SH, Grafton ST (2003) From ‘acting on’ to ‘acting with’: the functional anatomy of object-oriented action schemata. Prog Brain Res 142:127–139CrossRefPubMedGoogle Scholar
  39. Johnson-Frey SH (2004) The neural bases of complex tool use in humans. Trends Cognit Sci 8:71–78CrossRefGoogle Scholar
  40. Johnson-Frey SH, Newman-Norlund R, Grafton ST (2005) A distributed left hemisphere network active during planning of everyday tool use skills. Cereb Cortex 15:681–695CrossRefPubMedGoogle Scholar
  41. Kamitani Y, Tong F (2005) Decoding the visual and subjective contents of the human brain. Nat Neurosci 8:679–685CrossRefPubMedPubMedCentralGoogle Scholar
  42. Kaplan JT, Man K, Greening SG (2015) Multivariate cross-classification: applying machine learning techniques to characterize abstraction in neural representations. Front Hum Neurosci 9:151CrossRefPubMedPubMedCentralGoogle Scholar
  43. Kellenbach ML, Brett M, Patterson K (2003) Actions speak louder than functions: the importance of manipulability and action in tool representation. J Cognit Neurosci 15:30–46CrossRefGoogle Scholar
  44. Kim S, Ogawa K, Lv J, Schweighofer N, Imamizu H (2015) Neural substrates related to motor memory with multiple timescales in sensorimotor adaptation. PLoS Biol 13:e1002312CrossRefPubMedPubMedCentralGoogle Scholar
  45. Kriegeskorte N, Goebel R, Bandettini P (2006) Information-based functional brain mapping. Proc Natl Acad Sci USA 103:3863–3868CrossRefPubMedPubMedCentralGoogle Scholar
  46. Kriegeskorte N, Simmons WK, Bellgowan PS, Baker CI (2009) Circular analysis in systems neuroscience: the dangers of double dipping. Nat Neurosci 12:535–540CrossRefPubMedPubMedCentralGoogle Scholar
  47. Kristensen S, Garcea FE, Mahon BZ, Almeida J (2016) Temporal frequency tuning reveals interactions between the dorsal and ventral visual streams. J Cognit Neurosci 28:1295–1302CrossRefGoogle Scholar
  48. Leshinskaya A, Caramazza A (2015) Abstract categories of functions in anterior parietal lobe. Neuropsychologia 76:27–40CrossRefPubMedGoogle Scholar
  49. Lewis JW (2006) Cortical networks related to human use of tools. Neuroscientist 12:211–231CrossRefPubMedGoogle Scholar
  50. Macdonald SN, Culham JC (2015) Do human brain areas involved in visuomotor actions show a preference for real tools over visually similar non-tools? Neuropsychologia 77:35–41CrossRefPubMedGoogle Scholar
  51. Mahon BZ, Milleville SC, Negri GA, Rumiati RI, Caramazza A, Martin A (2007) Action-related properties shape object representations in the ventral stream. Neuron 55:507–520CrossRefPubMedPubMedCentralGoogle Scholar
  52. Mahon BZ, Kumar N, Almeida J (2013) Spatial frequency tuning reveals interactions between the dorsal and ventral visual systems. J Cognit Neurosci 25:862–871CrossRefGoogle Scholar
  53. Martin M, Beume L, Kummerer D et al (2015) Differential roles of ventral and dorsal streams for conceptual and production-related components of tool use in acute stroke patients. Cereb Cortex. doi:10.1093/cercor/bhv179 Google Scholar
  54. Martin M, Nitschke K, Beume L et al (2016) Brain activity underlying tool-related and imitative skills after major left hemisphere stroke. Brain 139(Pt 5):1497–1516. doi:10.1093/brain/aww035 CrossRefPubMedGoogle Scholar
  55. Misaki M, Kim Y, Bandettini PA, Kriegeskorte N (2010) Comparison of multivariate classifiers and response normalizations for pattern-information fMRI. Neuroimage 53:103–118CrossRefPubMedPubMedCentralGoogle Scholar
  56. Moll J, de Oliveira-Souza R, Passman LJ, Cunha FC, Souza-Lima F, Andreiuolo PA (2000) Functional MRI correlates of real and imagined tool-use pantomimes. Neurology 54:1331–1336CrossRefPubMedGoogle Scholar
  57. Mruczek RE, von Loga IS, Kastner S (2013) The representation of tool and non-tool object information in the human intraparietal sulcus. J Neurophysiol 109:2883–2896CrossRefPubMedPubMedCentralGoogle Scholar
  58. Mur M, Bandettini PA, Kriegeskorte N (2009) Revealing representational content with pattern-information fMRI—an introductory guide. Soc Cognit Affect Neurosci 4:101–109CrossRefGoogle Scholar
  59. Murata A, Gallese V, Luppino G, Kaseda M, Sakata H (2000) Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP. J Neurophysiol 83:2580–2601PubMedGoogle Scholar
  60. Noppeney U, Price CJ, Penny WD, Friston KJ (2006) Two distinct neural mechanisms for category-selective responses. Cereb Cortex 16:437–445CrossRefPubMedGoogle Scholar
  61. Norman KA, Polyn SM, Detre GJ, Haxby JV (2006) Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends Cognit Sci 10:424–430CrossRefGoogle Scholar
  62. Ogawa K, Imamizu H (2013) Human sensorimotor cortex represents conflicting visuomotor mappings. J Neurosci 33:6412–6422CrossRefPubMedGoogle Scholar
  63. Ogawa K, Inui T (2011) Neural representation of observed actions in the parietal and premotor cortex. Neuroimage 56:728–735CrossRefPubMedGoogle Scholar
  64. Ogawa K, Inui T (2012) Reference frame of human medial intraparietal cortex in visually guided movements. J Cognit Neurosci 24:171–182CrossRefGoogle Scholar
  65. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113CrossRefPubMedGoogle Scholar
  66. Oosterhof NN, Tipper SP, Downing PE (2012) Visuo-motor imagery of specific manual actions: a multi-variate pattern analysis fMRI study. Neuroimage 63:262–271CrossRefPubMedGoogle Scholar
  67. Peeters RR, Rizzolatti G, Orban GA (2013) Functional properties of the left parietal tool use region. Neuroimage 78:83–93CrossRefPubMedGoogle Scholar
  68. Rice NJ, Valyear KF, Goodale MA, Milner AD, Culham JC (2007) Orientation sensitivity to graspable objects: an fMRI adaptation study. Neuroimage 36(Suppl 2):T87–T93CrossRefPubMedGoogle Scholar
  69. Rizzolatti G, Matelli M (2003) Two different streams form the dorsal visual system: anatomy and functions. Exp Brain Res 153:146–157CrossRefPubMedGoogle Scholar
  70. Rumiati RI, Weiss PH, Shallice T, Ottoboni G, Noth J, Zilles K, Fink GR (2004) Neural basis of pantomiming the use of visually presented objects. Neuroimage 21:1224–1231CrossRefPubMedGoogle Scholar
  71. Tucker M, Ellis R (1998) On the relations between seen objects and components of potential actions. J Exp Psychol Hum Percept Perform 24:830–846CrossRefPubMedGoogle Scholar
  72. Tunik E, Rice NJ, Hamilton A, Grafton ST (2007) Beyond grasping: representation of action in human anterior intraparietal sulcus. Neuroimage 36(Suppl 2):T77–T86CrossRefPubMedPubMedCentralGoogle Scholar
  73. Valyear KF, Culham JC, Sharif N, Westwood D, Goodale MA (2006) A double dissociation between sensitivity to changes in object identity and object orientation in the ventral and dorsal visual streams: a human fMRI study. Neuropsychologia 44:218–228CrossRefPubMedGoogle Scholar
  74. Valyear KF, Cavina-Pratesi C, Stiglick AJ, Culham JC (2007) Does tool-related fMRI activity within the intraparietal sulcus reflect the plan to grasp? Neuroimage 36(Suppl 2):T94–T108CrossRefPubMedGoogle Scholar
  75. Vingerhoets G, Acke F, Vandemaele P, Achten E (2009) Tool responsive regions in the posterior parietal cortex: effect of differences in motor goal and target object during imagined transitive movements. Neuroimage 47:1832–1843CrossRefPubMedGoogle Scholar
  76. Vingerhoets G, Vandekerckhove E, Honore P, Vandemaele P, Achten E (2011) Neural correlates of pantomiming familiar and unfamiliar tools: action semantics versus mechanical problem solving? Hum Brain Mapp 32:905–918CrossRefPubMedGoogle Scholar
  77. Weiss PH, Achilles EI, Moos K, Hesse MD, Sparing R, Fink GR (2013) Transcranial direct current stimulation (tDCS) of left parietal cortex facilitates gesture processing in healthy subjects. J Neurosci 33:19205–19211CrossRefPubMedGoogle Scholar
  78. Wurm MF, Lingnau A (2015) Decoding actions at different levels of abstraction. J Neurosci 35:7727–7735CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of PsychologyHokkaido UniversitySapporoJapan

Personalised recommendations