Abstract
Adaptation to sensorimotor transformations has received much attention in recent years. However, the role of motivation and its relation to the implicit and explicit processes underlying adaptation has been neglected thus far. Here, we examine the influence of extrinsic motivation on adaptation to a visuomotor rotation by way of providing financial incentives for accurate movements. Participants in the experimental group “bonus” received a defined amount of money for high end-point accuracy in a visuomotor rotation task; participants in the control group “no bonus” did not receive a financial incentive. Results showed better overall adaptation to the visuomotor transformation in participants who were extrinsically motivated. However, there was no beneficial effect of financial incentives on the implicit component, as assessed by the after-effects, and on separately assessed explicit knowledge. These findings suggest that the positive influence of financial incentives on adaptation is due to a component which cannot be measured by after-effects or by our test of explicit knowledge. A likely candidate is model-free learning based on reward-prediction errors, which could be enhanced by the financial bonuses.
This is a preview of subscription content,
to check access.


References
Bock O (2005) Components of sensorimotor adaptation in young and elderly subjects. Exp Brain Res 160:259–263. doi:10.1007/s00221-004-2133-5
Camerer CF, Hogart RM (1999) The effects of financial incentives in experiments: a review and capital-labor-production framework. J Risk Uncertain 19:7–42
Cunningham HA (1989) Aiming error under transformed spatial mappings suggests a structure for visual-motor maps. J Exp Psychol Hum 15:493–506
Daniel R, Pollmann S (2010) Comparing the neural basis of monetary reward and cognitive feedback during information-integration category learning. J Neurosci 30:47–55. doi:10.1523/JNEUROSCI.2205-09.2010
Daniels EB, Kobas GV, Drury CG (1976) Monetary and non-monetary incentives in motor performance. Ergonomics 19:61–68. doi:10.1080/00140137608931514
Ehrenstein WH, Arnold-Schulz-Gahmen BE (1997) Auge, Ohr, Hand und Fuß: Bestimmung des individuellen Lateralitätsprofil (Fragebogen). IfADo, Dortmund
Galea JM, Mallia E, Rothwell J, Diedrichsen J (2015) The dissociable effects of punishment and reward on motor learning. Nat Neurosci 18:597–604. doi:10.1038/nn.3956
Haith AM, Krakauer JW (2013) Model-based and model-free mechanisms of human motor learning. In: Richardson MJ, Riley MA, Shockley K (eds) Progress in motor control: neural computational and dynamic approaches. Springer, New York, pp 1–21. doi:10.1007/978-1-4614-5465-6_1
Hegele M, Heuer H (2010a) Adaptation to a direction-dependent visuomotor gain in the young and elderly. Psychol Res 74:21–34. doi:10.1007/s00426-008-0221-z
Hegele M, Heuer H (2010b) Implicit and explicit components of dual adaptation to visuomotor rotations. Conscious Cogn 19:906–917. doi:10.1016/j.concog.2010.05.005
Heuer H, Hegele M (2008a) Adaptation to a nonlinear visuomotor amplitude transformation with continuous and terminal visual feedback. J Mot Behav 40:368–379
Heuer H, Hegele M (2008b) Constraints on visuo-motor adaptation depend on the type of visual feedback during practice. Exp Brain Res 185:101–110. doi:10.1007/s00221-007-1135-5
Heuer H, Hegele M (2008c) Adaptation to visuomotor rotations in younger and older adults. Psychol Aging 23:190–222. doi:10.1037/0882-7974.23.1.190
Heuer H, Hegele M (2014) Age-related variations of visuomotor adaptation beyond explicit knowledge. Front Aging Neurosci 6:152. doi:10.3389/fnagi.2014.00152
Heuer H, Hegele M (2015) Explicit and implicit components of visuo-motor adaptation: an analysis of individual differences. Consciousn Cogn 33:156–169
Heuer H, Rapp K (2011) Active error corrections enhance adaptation to a visuo-motor rotation. Exp Brain Res 211:97–108
Heuer H, Hegele M, Sülzenbrück S (2011) Implicit and explicit adjustments to extrinsic visuo-motor transformations and their age-related changes. Hum Mov Sci 30:916–930
Huang VS, Haith A, Mazzoni P, Krakauer JW (2011) Rethinking motor learning and savings in adaptation paradigms: model-free memory for successful actions combines with internal models. Neuron 70:787–801
Imamizu H, Sugimoto N, Osu R, Tsutsui K, Sugiyama K, Wada Y, Kawato M (2007) Explicit contextual information selectively contributes to predictive switching of internal models. Exp Brain Res 181:395–408
Izawa J, Shadmehr R (2011) Learning from sensory and reward prediction errors during motor adaptation. PLoS Comput Biol 7:e1002012. doi:10.1371/journal.pcbi.1002012
Izawa J, Rane T, Donchin O, Shadmehr R (2008) Motor adaptation as a process of reoptimization. J Neurosci 28:2883–2891. doi:10.1523/JNEUROSCI.5359-07.2008
Kantak SS, Winstein CJ (2012) Learning-performance distinction and memory processes for motor skills: a focused review and perspective. Behav Brain Res 228:219–231
Krohne HW, Egloff B, Kohlmann C-W, Tausch A (1996) Untersuchung mit einer deutschen Form der Positive and Negative Affect Schedule (PANAS). Diagnostica 42:139–156
Lewthwaite R, Wulf G (2010) Social-comparative feedback affects motor skill learning. Q J Exp Psychol 63:738–749. doi:10.1080/17470210903111839
Locke HS, Braver TS (2008) Motivational influences on cognitive control: behavior, brain activation, and individual differences. Cogn Affect Behav Ne 8:99–112. doi:10.3758/CABN.8.1.99
Maxwell JP, Masters RSW, Kerr E, Weedon E (2001) The implicit benefit of learning without errors. Q J Exp Psychol-A 54:1049–1068. doi:10.1080/713756014
Mazzoni P, Krakauer JW (2006) An implicit plan overrides an explicit strategy during visuomotor adaptation. J Neurosci 26:3642–3645. doi:10.1523/JNEUROSCI.5317-05.2006
Mazzoni P, Wexler NS (2009) Parallel explicit and implicit control of reaching. PLoS ONE 4:e7557. doi:10.1371/journal.pone.0007557.g001
Mir P, Trender-Gerhard I, Edwards MJ et al (2011) Motivation and movement: the effect of monetary incentive on performance speed. Exp Brain Res 209:551–559. doi:10.1007/s00221-011-2583-5
Nikooyan AA, Ahmed AA (2015) Reward feedback accelerates motor learning. J Neurophysiol 113:633–646. doi:10.1152/jn.00032.2014
Nummenmaa L, Niemi P (2004) Inducing affective states with success-failure manipulations: a meta-analysis. Emotion 4:207–214
Ramnani N, Miall RC (2003) Instructed delay activity in the human prefrontal cortex is modulated by monetary reward expectation. Cereb Cortex 13:318–327. doi:10.1093/cercor/13.3.318
Rand MK, Heuer H (2013) Implicit and explicit representations of hand position in tool use. PLoS ONE 8(7):e68471
Rand MK, Wang L, Müsseler J, Heuer H (2013) Vision and proprioception in action monitoring by young and older adults. Neurobiol Aging 34:1864–1872
Ryan RM, Deci EL (2000) Intrinsic and extrinsic motivation: classic definitions and new directions. Contemp Educ Psychol 25:54–67. doi:10.1006/ceps.1999.1020
Schuler H, Prochaska M (2001) Leistungsmotivationsinventar (Kurzform). Dimensionen berufsbezogener Leistungsorientierung. Hogrefe Verlag, Göttingen
Schulz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80:1–27
Stratton GM (1897) Vision without inversion of the retinal image. Psychol Rev 4:341–360
Sülzenbrück S (2012) The impact of visual feedback type on the mastery of visuo-motor transformations. Z Psychol 220:3–9. doi:10.1027/2151-2604/a000084
Sülzenbrück S, Heuer H (2009) Functional independence of explicit and implicit motor adjustments. Conscious Cogn 18:145–159. doi:10.1016/j.concog.2008.12.001
Taylor JA, Ivry RB (2012) The role of strategies in motor learning. Ann NY Acad Sci 1251:1–12
Taylor JA, Ivry RB (2013) Implicit and explicit processes in motor learning. In: Prinz W, Beisert M, Herwig A (eds) Action science: foundations of an emerging discipline. The MIT Press, London, Cambridge, pp 63–88
Taylor JA, Krakauer JW, Ivry RB (2014) Explicit and implicit contributions to learning in a sensorimotor adaptation task. J Neurosci 34:3023–3032. doi:10.1523/JNEUROSCI.3619-13.2014
Vallerand RJ (2007) Intrinsic and extrinsic motivation in sport and physical activity: a review and a look at the future. In: Tenenbaum G, Eklund C (eds) Handbook of sport psychology. Wiley, Hoboken, pp 59–83
Van Asseldonk EHF, Wessels M, Stienen AHA, Van der Helm FCT, Van der Kooij H (2009) Influence of haptic guidance in learning a novel visuomotor task. J Physiol (Paris) 103:276–285
Vindras P, Viviani P (2002) Altering the visuomotor gain: evidence that motor plans deal with vector quantities. Exp Brain Res 147:280–295. doi:10.1007/s00221-002-1211-9
von Helmholtz H (1867) Handbuch der physiologischen Optik. Voss, Leipzig
Wallace SA, Newell K (1983) Visual control of discrete aiming movements. Quart J Exp Psychol 35A:311–321
Wang L, Müsseler J (2012) Generalization of visuomotor adaptation depends on the spatial characteristic of visual workspace. Exp Brain Res 223:353–365. doi:10.1007/s00221-012-3264-8
Wickens JR, Reynolds JNJ, Hyland BI (2003) Neural mechanisms of reward-related motor learning. Curr Opin Neurobiol 13:685–690. doi:10.1016/j.conb.2003.10.013
Willingham DB, Goedert-Eschmann K (1999) The relation between implicit and explicit learning: evidence for parallel development. Psychol Sci 10:531–534. doi:10.1111/1467-9280.00201
Wolpert DM, Kawato M (1998) Multiple paired forward and inverse models for motor control. Neural Netw 11:1317–1329
Wu J, Yang J, Honda T (2010) Fitts’ law holds for pointing movements under conditions of restricted visual feedback. Hum Mov Sci 29:882–892
Wulf G (2007) Self-controlled practice enhances motor learning: implications for physiotherapy. Physiotherapy 93:96–101. doi:10.1016/j.physio.2006.08.005
Wulf G, Adams N (2014) Small choices can enhance balance learning. Hum Mov Sci 38:235–240. doi:10.1016/j.humov.2014.10.007
Wulf G, Chiviacowsky S, Cardozo PL (2014) Additive benefits of autonomy support and enhanced expectancies for motor learning. Hum Mov Sci 37:12–20. doi:10.1016/j.humov.2014.06.004
Acknowledgments
This research was supported by a grant from the Deutsche Forschungsgesellschaft to Sandra Sülzenbrück (DFG SU 693/1-1). We wish to thank Jacqueline Paschke and Maleen Greine for running the experiment.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Ethical standards
All procedures performed in studies involving human participants were approved by the Ethics Commission of the Leibniz Research Centre and were in accordance with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.
Rights and permissions
About this article
Cite this article
Gajda, K., Sülzenbrück, S. & Heuer, H. Financial incentives enhance adaptation to a sensorimotor transformation. Exp Brain Res 234, 2859–2868 (2016). https://doi.org/10.1007/s00221-016-4688-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00221-016-4688-3