Effects of a common transcranial direct current stimulation (tDCS) protocol on motor evoked potentials found to be highly variable within individuals over 9 testing sessions

Abstract

Transcranial direct current stimulation (tDCS) uses a weak electric current to modulate neuronal activity. A neurophysiologic outcome measure to demonstrate reliable tDCS modulation at the group level is transcranial magnetic stimulation engendered motor evoked potentials (MEPs). Here, we conduct a study testing the reliability of individual MEP response patterns following a common tDCS protocol. Fourteen participants (7m/7f) each underwent nine randomized sessions of 1 mA, 10 min tDCS (3 anode; 3 cathode; 3 sham) delivered using an M1/orbito-frontal electrode montage (sessions separated by an average of ~5.5 days). Fifteen MEPs were obtained prior to, immediately following and in 5 min intervals for 30 min following tDCS. TMS was delivered at 130 % resting motor threshold using neuronavigation to ensure consistent coil localization. A number of non-experimental variables were collected during each session. At the individual level, considerable variability was seen among different testing sessions. No participant demonstrated an excitatory response ≥20 % to all three anodal sessions, and no participant demonstrated an inhibitory response ≥20 % to all three cathodal sessions. Intra-class correlation revealed poor anodal and cathodal test–retest reliability [anode: ICC(2,1) = 0.062; cathode: ICC(2,1) = 0.055] and moderate sham test–retest reliability [ICC(2,1) = 0.433]. Results also revealed no significant effect of tDCS at the group level. Using this common protocol, we found the effects of tDCS on MEP amplitudes to be highly variable at the individual level. In addition, no significant effects of tDCS on MEP amplitude were found at the group level. Future studies should consider utilizing a more strict experimental protocol to potentially account for intra-individual response variations.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Amassian VE, Cracco RQ (1987) Human cerebral cortical responses to contralateral transcranial stimulation. Neurosurgery 20(1):148–155

    CAS  PubMed  Google Scholar 

  2. Amassian VE, Cracco RQ, Maccabee PJ (1989) Focal stimulation of human cerebral cortex with the magnetic coil: a comparison with electrical stimulation. Electroencephalogr Clin Neurophysiol 74(6):401–416

    CAS  Article  PubMed  Google Scholar 

  3. Ardolino G, Bossi B, Barbieri S, Priori A (2005) Non-synaptic mechanisms underlie the after-effects of cathodal transcutaneous direct current stimulation of the human brain. J Physiol 568(Pt 2):653–663. doi:10.1113/jphysiol.2005.088310

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Bashir S, Perez J, Horvath JC, Pascual-Leone A (2013) Differentiation of motor cortical representation of hand muscles by navigated mapping of optimal TMS current directions in healthy subjects. J Clin Neurophysiol 30(4):390

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bastani A, Jaberzadeh S (2012) A higher number of TMS-elicited MEP from a combined hotspot improves intra-and inter-session reliability of the upper limb muscles in healthy individuals. PLoS One 7(10):e47582

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Bastani A, Jaberzadeh S (2013) Differential modulation of corticospinal excitability by different current densities of anodal transcranial direct current stimulation. PLoS One 8(8):e72254

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Batsikadze G, Moliadze V, Paulus W, Kuo MF, Nitsche MA (2013) Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. J Physiol 591(7):1987–2000

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Bikson M, Datta A, Rahman A, Scaturro J (2010) Electrode montages for tDCS and weak transcranial electrical stimulation: role of “return” electrode’s position and size. Clin Neurophysiol 121(12):1976

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Bradnam LV, Stinear CM, Byblow WD (2011) Cathodal transcranial direct current stimulation suppresses ipsilateral projections to presumed propriospinal neurons of the proximal upper limb. J Neurophysiol 105(5):2582–2589

    Article  PubMed  Google Scholar 

  10. Brasil-Neto JP, McShane LM, Fuhr P, Hallett M, Cohen LG (1992) Topographic mapping of the human motor cortex with magnetic stimulation: factors affecting accuracy and reproducibility. Electroencephalogr Clin Neurophysiol 85(1):9–16

    CAS  Article  PubMed  Google Scholar 

  11. Chaieb L, Antal A, Paulus W (2008) Gender-specific modulation of short-term neuroplasticity in the visual cortex induced by transcranial direct current stimulation. Vis Neurosci 25(01):77–81

    Article  PubMed  Google Scholar 

  12. Chang WH, Fried PJ, Saxena S, Jannati A, Gomes-Osman J, Kim YH, Pascual-Leone A (2016) Optimal number of pulses as outcome measure in neuronavigated transcranial magnetic stimulation. Clin Neurophysiol [Epub ahead of print]

  13. Chew T, Ho KA, Loo CK (2015) Inter- and intra-individual variability in response to transcranial direct current stimulation(tDCS) at varying current intensities. Brain Stimul 8(6):1130–1137

    Article  PubMed  Google Scholar 

  14. Datta A, Baker JM, Bikson M, Fridriksson J (2011) Individualized model predicts brain current flow during transcranial direct-current stimulation treatment in responsive stroke patient. Brain Stimul 4(3):169–174

    Article  PubMed  Google Scholar 

  15. de Tommaso M, Invitto S, Ricci K, Lucchese V, Delussi M, Quattromini P et al (2014) Effects of anodal TDCS stimulation of left parietal cortex on visual spatial attention tasks in men and women across menstrual cycle. Neurosci Lett 574:21–25. doi:10.1016/j.neulet.2014.05.014

    Article  PubMed  Google Scholar 

  16. Di Lazzaro V, Oliviero A, Pilato F, Saturno E, Dileone M, Mazzone P et al (2004) The physiological basis of transcranial motor cortex stimulation in conscious humans. Clin Neurophysiol 115(2):255–266

    Article  PubMed  Google Scholar 

  17. Di Lazzaro V, Manganelli F, Dileone M, Notturno F, Esposito M, Capasso M et al (2012) The effects of prolonged cathodal direct current stimulation on the excitatory and inhibitory circuits of the ipsilateral and contralateral motor cortex. J Neural Transm 119(12):1499–1506. doi:10.1007/s00702-012-0845-4

    Article  PubMed  Google Scholar 

  18. Ellaway PH, Davey NJ, Maskill DW, Rawlinson SR, Lewis HS, Anissimova NP (1998) Variability in the amplitude of skeletal muscle responses to magnetic stimulation of the motor cortex in man. Electroencephalogr Clin Neurophysiol 109(2):104–113

    CAS  Article  PubMed  Google Scholar 

  19. Fleiss JL (1986) The design and analysis of clinical experiments. Wiley, New York

    Google Scholar 

  20. Fujiyama H, Hyde J, Hinder MR, Kim SJ, McCormack GH, Vickers JC, Summers JJ (2014) Delayed plastic responses to anodal tDCS in older adults. Front Aging Neurosci 6:10–3389

    Article  Google Scholar 

  21. Guggisberg AG, Dubach P, Hess CW, Wüthrich C, Mathis J (2001) Motor evoked potentials from masseter muscle induced by transcranial magnetic stimulation of the pyramidal tract: the importance of coil orientation. Clin Neurophysiol 112(12):2312–2319

    CAS  Article  PubMed  Google Scholar 

  22. Hahn C, Rice J, Macuff S, Minhas P, Rahman A, Bikson M (2013) Methods for extra-low voltage transcranial direct current stimulation: current and time dependent impedance decreases. Clin Neurophysiol 124(3):551–556

    Article  PubMed  Google Scholar 

  23. Horvath JC (2015) Are current blinding methods for transcranial direct current stimulation (tDCS) effective in healthy populations? Clin Neurophysiol 126(11):2045–2046

    Article  PubMed  Google Scholar 

  24. Horvath JC, Carter O, Forte JD (2014) Transcranial direct current stimulation: five important issues we aren’t discussing (but probably should be). Front Syst Neurosci 8:2. doi:10.3389/fnsys.2014.00002

    Article  PubMed  PubMed Central  Google Scholar 

  25. Horvath JC, Forte JD, Carter O (2015a) Evidence that transcranial direct current stimulation (tDCS) generates little-to-no reliable neurophysiologic effect beyond MEP amplitude modulation in healthy human subjects: a systematic review. Neuropsychologia 66:213–236

    Article  PubMed  Google Scholar 

  26. Horvath JC, Forte JD, Carter O (2015b) Quantitative review finds no evidence of cognitive effects in healthy populations from single-session transcranial direct current stimulation (tDCS). Brain Stimul 8(3):535–550

    Article  PubMed  Google Scholar 

  27. Jacobson L, Koslowsky M, Lavidor M (2012) tDCS polarity effects in motor and cognitive domains: a meta-analytical review. Exp Brain Res 216(1):1–10

    Article  PubMed  Google Scholar 

  28. Julkunen P, Säisänen L, Danner N, Niskanen E, Hukkanen T, Mervaala E, Könönen M (2009) Comparison of navigated and non-navigated transcranial magnetic stimulation for motor cortex mapping, motor threshold and motor evoked potentials. Neuroimage 44(3):790–795

    Article  PubMed  Google Scholar 

  29. Karni A, Meyer G, Rey-Hipolito C, Jezzard P, Adams MM, Turner R, Ungerleider LG (1998) The acquisition of skilled motor performance: fast and slow experience-driven changes in primary motor cortex. Proc Natl Acad Sci 95(3):861–868

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Kasai T, Kawai S, Kawanishi M, Yahagi S (1997) Evidence for facilitation of motor evoked potentials (MEPs) induced by motor imagery. Brain Res 744(1):147–150

    CAS  Article  PubMed  Google Scholar 

  31. Kiers L, Cros D, Chiappa KH, Fang J (1993) Variability of motor potentials evoked by transcranial magnetic stimulation. Electroencephalogr Clin Neurophysiol 89(6):415–423

    CAS  Article  PubMed  Google Scholar 

  32. Kuo HI, Bikson M, Datta A, Minhas P, Paulus W, Kuo MF, Nitsche MA (2013) Comparing cortical plasticity induced by conventional and high-definition 4 × 1 ring tDCS: a neurophysiological study. Brain Stimul 6(4):644–648

    Article  PubMed  Google Scholar 

  33. Labruna L, Jamil A, Fresnoza S, Batsikadze G, Kuo MF et al (2016) Efficacy of Anodal Transcranial Direct Current Stimulation is Related to Sensitivity to Transcranial Magnetic Stimulation. Brain Stimul 9:8–15

    Article  PubMed  Google Scholar 

  34. Lang N, Nitsche MA, Paulus W, Rothwell JC, Lemon RN (2004a) Effects of transcranial direct current stimulation over the human motor cortex on corticospinal and transcallosal excitability. Exp Brain Res 156(4):439–443. doi:10.1007/s00221-003-1800-2

    CAS  Article  PubMed  Google Scholar 

  35. Lang N, Siebner HR, Ernst D, Nitsche MA, Paulus W, Lemon RN, Rothwell JC (2004b) Preconditioning with transcranial direct current stimulation sensitizes the motor cortex to rapid-rate transcranial magnetic stimulation and controls the direction of after-effects. Biol Psychiatry 56(9):634–639

    Article  PubMed  Google Scholar 

  36. Lopez-Alonso V, Cheeran B, Rio-Rodriguez D, Fernandez-Del-Olmo M (2014) Inter-individual variability in response to non-invasive brain stimulation paradigms. Brain Stimul 7(3):372–380

    Article  PubMed  Google Scholar 

  37. López-Alonso V, Fernández-del-Olmo M, Costantini A, Gonzalez-Henriquez JJ, Cheeran B (2015) Intra-individual variability in the response to anodal transcranial direct current stimulation. Clin Neurophysiol 126(12):2342–2347

    Article  PubMed  Google Scholar 

  38. Madhavan S, Stinear JW (2010) Focal and bi-directional modulation of lower limb motor cortex using anodal transcranial direct current stimulation. Brain Stimul 3(1):42

    Article  PubMed  PubMed Central  Google Scholar 

  39. Miyaguchi S, Onishi H, Kojima S, Sugawara K, Tsubaki A, Kirimoto H et al (2013) Corticomotor excitability induced by anodal transcranial direct current stimulation with and without non-exhaustive movement. Brain Res 1529:83–91. doi:10.1016/j.brainres.2013.07.026

    CAS  Article  PubMed  Google Scholar 

  40. Monte-Silva K, Kuo MF, Thirugnanasambandam N, Liebetanz D, Paulus W, Nitsche MA (2009) Dose-dependent inverted U-shaped effect of dopamine (D2-like) receptor activation on focal and nonfocal plasticity in humans. J Neurosci 29(19):6124–6131

    CAS  Article  PubMed  Google Scholar 

  41. Monte-Silva K, Kuo MF, Liebetanz D, Paulus W, Nitsche MA (2010) Shaping the optimal repetition interval for cathodal transcranial direct current stimulation (tDCS). J Neurophysiol 103(4):1735–1740

    Article  PubMed  Google Scholar 

  42. Monte-Silva K, Kuo MF, Hessenthaler S, Fresnoza S, Liebetanz D, Paulus W, Nitsche MA (2013) Induction of late LTP-like plasticity in the human motor cortex by repeated non-invasive brain stimulation. Brain Stimul 6(3):424–432

    Article  PubMed  Google Scholar 

  43. Nielsen JF (1996) Improvement of amplitude variability of motor evoked potentials in multiple sclerosis patients and in healthy subjects. Electroencephalogr Clin Neurophysiol 101(5):404–411

    CAS  Article  PubMed  Google Scholar 

  44. Nitsche MA, Paulus W (2000) Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 527(Pt 3):633–639

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Nitsche MA, Paulus W (2001) Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 57(10):1899–1901

    CAS  Article  PubMed  Google Scholar 

  46. Nitsche MA, Nitsche MS, Klein CC, Tergau F, Rothwell JC, Paulus W (2003) Level of action of cathodal DC polarisation induced inhibition of the human motor cortex. Clin Neurophysiol 114(4):600–604

    Article  PubMed  Google Scholar 

  47. Nitsche MA, Doemkes S, Karakose T, Antal A, Liebetanz D, Lang N et al (2007) Shaping the effects of transcranial direct current stimulation of the human motor cortex. J Neurophysiol 97(4):3109–3117. doi:10.1152/jn.01312.2006

    CAS  Article  PubMed  Google Scholar 

  48. O’Connell NE, Cossar J, Marston L, Wand BM, Bunce D, Moseley GL, De Souza LH (2012) Rethinking clinical trials of transcranial direct current stimulation: participant and assessor blinding is inadequate at intensities of 2mA. PLoS One 7(10):e47514. doi:10.1371/journal.pone.0047514

    Article  PubMed  PubMed Central  Google Scholar 

  49. Parkin BL, Ekhtiari H, Walsh VF (2015) Non-invasive human brain stimulation in cognitive neuroscience: a primer. Neuron 87(5):932–945

    CAS  Article  PubMed  Google Scholar 

  50. Pelletier SJ, Cicchetti F (2015) Cellular and molecular mechanisms of action of transcranial direct current stimulation: evidence from in vitro and in vivo models. Int J Neuropsychopharmacol 18(2):pyu047

    Article  PubMed Central  Google Scholar 

  51. Pellicciari MC, Brignani D, Miniussi C (2013) Excitability modulation of the motor system induced by transcranial direct current stimulation: a multimodal approach. Neuroimage 83:569–580. doi:10.1016/j.neuroimage.2013.06.076

    Article  PubMed  Google Scholar 

  52. Plowman-Prine EK, Triggs WJ, Malcolm MP, Rosenbek JC (2008) Reliability of transcranial magnetic stimulation for mapping swallowing musculature in the human motor cortex. Clin Neurophysiol 119(10):2298–2303

    CAS  Article  PubMed  Google Scholar 

  53. Pocock SJ, Assmann SE, Enos LE, Kasten LE (2002) Subgroup analysis, covariate adjustment and baseline comparisons in clinical trial reporting: current practice and problems. Stat Med 21:2917–2930

    Article  PubMed  Google Scholar 

  54. Power HA, Norton JA, Porter CL, Doyle Z, Hui I, Chan KM (2006) Transcranial direct current stimulation of the primary motor cortex affects cortical drive to human musculature as assessed by intermuscular coherence. J Physiol 577(Pt 3):795–803. doi:10.1113/jphysiol.2006.116939

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. Quartarone A, Morgante F, Bagnato S, Rizzo V, Sant’Angelo A, Aiello E et al (2004) Long lasting effects of transcranial direct current stimulation on motor imagery. NeuroReport 15(8):1287–1291

    Article  PubMed  Google Scholar 

  56. Quartarone A, Rizzo V, Bagnato S, Morgante F, Sant’Angelo A, Romano M et al (2005) Homeostatic-like plasticity of the primary motor hand area is impaired in focal hand dystonia. Brain 128(8):1943–1950

    Article  PubMed  Google Scholar 

  57. Roche N, Lackmy A, Achache V, Bussel B, Katz R (2011) Effects of anodal transcranial direct current stimulation over the leg motor area on lumbar spinal network excitability in healthy subjects. J Physiol 589(Pt 11):2813–2826. doi:10.1113/jphysiol.2011.205161

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. Rosler KM, Roth DM, Magistris MR (2008) Trial-to-trial size variability of motor-evoked potentials. A study using the triple stimulation technique. Exp Brain Res 187(1):51–59. doi:10.1007/s00221-008-1278-z

    Article  PubMed  Google Scholar 

  59. Rotenberg A, Horvath JC, Pascual-Leone A (2014) Transcranial magnetic stimulation. Springer, New York

    Google Scholar 

  60. Roy Choudhury K, Boyle L, Burke M, Lombard W, Ryan S, McNamara B (2011) Intra subject variation and correlation of motor potentials evoked by transcranial magnetic stimulation. Ir J Med Sci 180:873–880

    CAS  Article  PubMed  Google Scholar 

  61. Royal I, Lidji P, Théoret H, Russo FA, Peretz I (2015) Excitability of the motor system: a transcranial magnetic stimulation study on singing and speaking. Neuropsychologia 75:525–532

    Article  PubMed  Google Scholar 

  62. Russell M, Goodman T, Wang Q, Groshong B, Lyeth BG (2014) Gender differences in current received during transcranial electrical stimulation. Front Psychiatry 5:104. doi:10.3389/fpsyt.2014.00104

    PubMed  PubMed Central  Google Scholar 

  63. Scelzo E, Giannicola G, Rosa M, Ciocca M, Ardolino G, Cogiamanian F et al (2011) Increased short latency afferent inhibition after anodal transcranial direct current stimulation. Neurosci Lett 498(2):167–170. doi:10.1016/j.neulet.2011.05.007

    CAS  Article  PubMed  Google Scholar 

  64. Schabrun SM, Chipchase LS, Zipf N, Thickbroom GW, Hodges PW (2013) Interaction between simultaneously applied neuromodulatory interventions in humans. Brain Stimul 6(4):624–630

    Article  PubMed  Google Scholar 

  65. Siebner HR, Lang N, Rizzo V, Nitsche MA, Paulus W, Lemon RN, Rothwell JC (2004) Preconditioning of low-frequency repetitive transcranial magnetic stimulation with transcranial direct current stimulation: evidence for homeostatic plasticity in the human motor cortex. J Neurosci 24(13):3379–3385

    CAS  Article  PubMed  Google Scholar 

  66. Simis M, Adeyemo BO, Medeiros LF, Miraval F, Gagliardi RJ, Fregni F (2013) Motor cortex-induced plasticity by noninvasive brain stimulation: a comparison between transcranial direct current stimulation and transcranial magnetic stimulation. NeuroReport 24(17):973–975

    Article  PubMed  Google Scholar 

  67. Smith MJ, Keel JC, Greenberg BD, Adams LF, Schmidt PJ, Rubinow DA, Wassermann EM (1999) Menstrual cycle effects on cortical excitability. Neurology 53(9):2069–2072

    CAS  Article  PubMed  Google Scholar 

  68. Stagg CJ, Nitsche MA (2011) Physiological basis of transcranial direct current stimulation. Neuroscientist 17(1):37–53. doi:10.1177/1073858410386614

    Article  PubMed  Google Scholar 

  69. Stinear CM, Byblow WD (2003) Motor imagery of phasic thumb abduction temporally and spatially modulates corticospinal excitability. Clin Neurophysiol 114(5):909–914

    Article  PubMed  Google Scholar 

  70. Suzuki K, Fujiwara T, Tanaka N, Tsuji T, Masakado Y, Hase K et al (2012) Comparison of the after-effects of transcranial direct current stimulation over the motor cortex in patients with stroke and healthy volunteers. Int J Neurosci 122(11):675–681. doi:10.3109/00207454.2012.707715

    Article  PubMed  Google Scholar 

  71. Teo JT, Bentley G, Lawrence P, Soltesz F, Miller S, Wille D et al (2014) Late cortical plasticity in motor and auditory cortex: role of met-allele in BDNF Val66Met polymorphism. Int J Neuropsychopharmacol 17(5):705–713. doi:10.1017/S1461145713001636

    CAS  Article  PubMed  Google Scholar 

  72. Tremblay S, Beaule V, Lepage JF, Theoret H (2013) Anodal transcranial direct current stimulation modulates GABAB-related intracortical inhibition in the M1 of healthy individuals. NeuroReport 24(1):46–50. doi:10.1097/WNR.0b013e32835c36b8

    CAS  Article  PubMed  Google Scholar 

  73. Wassermann E, Epstein C, Ziemann U (2008) Oxford handbook of transcranial magnetic stimulation. Oxford University Press, Oxford

    Google Scholar 

  74. Wiethoff S, Hamada M, Rothwell JC (2014) Variability in response to transcranial direct current stimulation of the motor cortex. Brain Stimul 7(3):468–475. doi:10.1016/j.brs.2014.02.003

    Article  PubMed  Google Scholar 

  75. Wolf SL, Butler AJ, Campana GI, Parris TA, Struys DM, Weinstein SR, Weiss P (2004) Intra-subject reliability of parameters contributing to maps generated by transcranial magnetic stimulation in able-bodied adults. Clin Neurophysiol 115(8):1740–1747

    Article  PubMed  Google Scholar 

  76. Ziemann U, Rothwell JC (2000) I-waves in motor cortex. J Clin Neurophysiol 17(4):397–405

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

ARC-SRI: Science of Learning Research Centre (Project Number SR120300015).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jared Cooney Horvath.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Horvath, J.C., Vogrin, S.J., Carter, O. et al. Effects of a common transcranial direct current stimulation (tDCS) protocol on motor evoked potentials found to be highly variable within individuals over 9 testing sessions. Exp Brain Res 234, 2629–2642 (2016). https://doi.org/10.1007/s00221-016-4667-8

Download citation

Keywords

  • Transcranial direct current stimulation (tDCS)
  • Transcranial magnetic stimulation (TMS)
  • Motor evoked potentials (MEPs)
  • Longitudinal
  • Reliability