Advertisement

Experimental Brain Research

, Volume 234, Issue 7, pp 1997–2005 | Cite as

Role of brain hemispheric dominance in anticipatory postural control strategies

  • David Cioncoloni
  • Deborah Rosignoli
  • Matteo Feurra
  • Simone Rossi
  • Marco Bonifazi
  • Alessandro Rossi
  • Riccardo Mazzocchio
Research Article

Abstract

Most of the cerebral functions are asymmetrically represented in the two hemispheres. Moreover, dexterity and coordination of the distal segment of the dominant limbs depend on cortico-motor lateralization. In this study, we investigated whether postural control may be also considered a lateralized hemispheric brain function. To this aim, 15 young subjects were tested in standing position by measuring center of pressure (COP) shifts along the anteroposterior axis (COP-Y) during dynamic posturography before and after continuous Theta Burst Stimulation (cTBS) intervention applied to the dominant or non-dominant M1 hand area as well as to the vertex. We show that when subjects were expecting a forward platform translation, the COP-Y was positioned significantly backward or forward after dominant or non-dominant M1 stimulation, respectively. We postulate that cTBS applied on M1 may have disrupted the functional connectivity between intra- and interhemispheric areas implicated in the anticipatory control of postural stability. This study suggests a functional asymmetry between the two homologous primary motor areas, with the dominant hemisphere playing a critical role in the selection of the appropriate postural control strategy.

Keywords

Functional laterality Dominance, cerebral Postural balance Transcranial magnetic stimulation 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Aruin AS, Latash ML (1995) The role of motor action in anticipatory postural adjustments studied with self-induced and externally triggered perturbations. Exp Brain Res 106:291–300CrossRefPubMedGoogle Scholar
  2. Beloozerova IN, Sirota MG, Orlovsky GN, Deliagina TG (2005) Activity of pyramidal tract neurons in the cat during postural corrections. J Neurophysiol 93:1831–1844CrossRefPubMedGoogle Scholar
  3. Castrioto A, Piscicelli C, Perennou D, Krack P, Debu B (2014) The pathogenesis of Pisa syndrome in Parkinson’s disease. Mov Disord 29:1100–1107CrossRefPubMedGoogle Scholar
  4. Chen CL, Lou SZ, Wu HW, Wu SK, Yeung KT, Su FC (2014) Effects of the type and direction of support surface perturbation on postural responses. J Neuroeng Rehabil 11:50CrossRefPubMedPubMedCentralGoogle Scholar
  5. Deliagina TG, Zelenin PV, Beloozerova IN, Orlovsky GN (2007) Nervous mechanisms controlling body posture. Physiol Behav 92:148–154CrossRefPubMedGoogle Scholar
  6. Di Lazzaro V, Pilato F, Saturno E, Oliviero A, Dileone M, Mazzone P, Insola A, Tonali PA, Ranieri F, Huang YZ, Rothwell JC (2005) Theta-burst repetitive transcranial magnetic stimulation suppresses specific excitatory circuits in the human motor cortex. J Physiol 565:945–950CrossRefPubMedPubMedCentralGoogle Scholar
  7. Elias LJ, Bryden MP, Bulman-Fleming MB (1998) Footedness is a better predictor than is handedness of emotional lateralization. Neuropsychologia 36:37–43CrossRefPubMedGoogle Scholar
  8. Fujiwara K, Maekawa M, Kiyota N, Yaguchi C (2012) Adaptation changes in dynamic postural control and contingent negative variation during backward disturbance by transient floor translation in the elderly. J Physiol Anthropol 31:12CrossRefPubMedPubMedCentralGoogle Scholar
  9. Ham JH, Lee JJ, Kim JS, Lee PH, Sohn YH (2015) Is dominant-side onset associated with a better motor compensation in parkinson’s disease?. Mov Disord 30(14):1921–1925. doi: 10.1002/mds.26418 CrossRefPubMedGoogle Scholar
  10. Hamada M, Murase N, Hasan A, Balaratnam M, Rothwell JC (2013) The role of interneuron networks in driving human motor cortical plasticity. Cereb Cortex 23:1593–1605CrossRefPubMedGoogle Scholar
  11. Hammond G (2002) Correlates of human handedness in primary motor cortex: a review and hypothesis. Neurosci Biobehav Rev 26:285–292CrossRefPubMedGoogle Scholar
  12. Henderson JM, Annett LE, Ryan LJ, Chiang W, Hidaka S, Torres EM, Dunnett SB (1999) Subthalamic nucleus lesions induce deficits as well as benefits in the hemiparkinsonian rat. Eur J Neurosci 11:2749–2757CrossRefPubMedGoogle Scholar
  13. Herrera-Marschitz M, Utsumi H, Ungerstedt U (1990) Scoliosis in rats with experimentally-induced hemiparkinsonism: dependence upon striatal dopamine denervation. J Neurol Neurosurg Psychiatry 53:39–43CrossRefPubMedPubMedCentralGoogle Scholar
  14. Holler I, Siebner HR, Cunnington R, Gerschlager W (2006) 5 Hz repetitive TMS increases anticipatory motor activity in the human cortex. Neurosci Lett 392:221–225CrossRefPubMedGoogle Scholar
  15. Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC (2005) Theta burst stimulation of the human motor cortex. Neuron 45:201–206CrossRefPubMedGoogle Scholar
  16. Huang YZ, Chen RS, Rothwell JC, Wen HY (2007) The after-effect of human theta burst stimulation is NMDA receptor dependent. Clin Neurophysiol 118:1028–1032CrossRefPubMedGoogle Scholar
  17. Jacobs JV, Fujiwara K, Tomita H, Furune N, Kunita K, Horak FB (2008) Changes in the activity of the cerebral cortex relate to postural response modification when warned of a perturbation. Clin Neurophysiol 119:1431–1442CrossRefPubMedPubMedCentralGoogle Scholar
  18. Jacobs JV, Wu G, Kelly KM (2015) Evidence for beta corticomuscular coherence during human standing balance: effects of stance width, vision, and support surface. Neuroscience 298:1–11CrossRefPubMedGoogle Scholar
  19. Karayannidou A, Beloozerova IN, Zelenin PV, Stout EE, Sirota MG, Orlovsky GN, Deliagina TG (2009) Activity of pyramidal tract neurons in the cat during standing and walking on an inclined plane. J Physiol 587:3795–3811CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kuhn AA, Williams D, Kupsch A, Limousin P, Hariz M, Schneider GH, Yarrow K, Brown P (2004) Event-related beta desynchronization in human subthalamic nucleus correlates with motor performance. Brain 127:735–746CrossRefPubMedGoogle Scholar
  21. Laufer Y, Sivan D, Schwarzmann R, Sprecher E (2003) Standing balance and functional recovery of patients with right and left hemiparesis in the early stages of rehabilitation. Neurorehabil Neural Repair 17:207–213CrossRefPubMedGoogle Scholar
  22. Maekawa M, Fujiwara K, Kiyota N, Yaguchi C (2013) Adaptation changes in dynamic postural control and contingent negative variation during repeated transient forward translation in the elderly. J Physiol Anthropol 32:24CrossRefPubMedPubMedCentralGoogle Scholar
  23. Marigold DS, Bethune AJ, Patla AE (2003) Role of the unperturbed limb and arms in the reactive recovery response to an unexpected slip during locomotion. J Neurophysiol 89:1727–1737CrossRefPubMedGoogle Scholar
  24. Mihara M, Miyai I, Hatakenaka M, Kubota K, Sakoda S (2008) Role of the prefrontal cortex in human balance control. Neuroimage 43:329–336CrossRefPubMedGoogle Scholar
  25. Mochizuki G, Boe S, Marlin A, McIlRoy WE (2010) Perturbation-evoked cortical activity reflects both the context and consequence of postural instability. Neuroscience 170:599–609CrossRefPubMedGoogle Scholar
  26. Morasso PG, Baratto L, Capra R, Spada G (1999) Internal models in the control of posture. Neural Netw 12:1173–1180CrossRefPubMedGoogle Scholar
  27. Nonnekes J, Scotti A, Oude Nijhuis LB, Smulders K, Queralt A, Geurts AC, Bloem BR, Weerdesteyn V (2013) Are postural responses to backward and forward perturbations processed by different neural circuits? Neuroscience 245:109–120CrossRefPubMedGoogle Scholar
  28. Ortu E, Ruge D, Deriu F, Rothwell JC (2009) Theta burst stimulation over the human primary motor cortex modulates neural processes involved in movement preparation. Clin Neurophysiol 120:1195–1203CrossRefPubMedGoogle Scholar
  29. Peurala SH, Kononen P, Pitkanen K, Sivenius J, Tarkka IM (2007) Postural instability in patients with chronic stroke. Restor Neurol Neurosci 25:101–108PubMedGoogle Scholar
  30. Popa T, Bonifazi M, Della Volpe R, Rossi A, Mazzocchio R (2007) Adaptive changes in postural strategy selection in chronic low back pain. Exp Brain Res 177:411–418CrossRefPubMedGoogle Scholar
  31. Popa T, Bonifazi M, Della Volpe R, Rossi A, Mazzocchio R (2008) Anticipatory control of impending postural perturbation in elite springboard divers. Eur J Appl Physiol 104:1007–1011CrossRefPubMedGoogle Scholar
  32. Rogers LJ, Andrew R (2002) Comparative vertebrates lateralization. Cambridge University PressGoogle Scholar
  33. Rose S, Rowland T, Pannek K, Baumann F, Coulthard A, McCombe P, Henderson R (2012) Structural hemispheric asymmetries in the human precentral gyrus hand representation. Neuroscience 210:211–221CrossRefPubMedGoogle Scholar
  34. Rossi S, Pasqualetti P, Rossini PM, Feige B, Ulivelli M, Glocker FX, Battistini N, Lucking CH, Kristeva-Feige R (2000) Effects of repetitive transcranial magnetic stimulation on movement-related cortical activity in humans. Cereb Cortex 10:802–808CrossRefPubMedGoogle Scholar
  35. Rossi S, Hallett M, Rossini PM, Pascual-Leone A (2009) Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol 120:2008–2039CrossRefPubMedPubMedCentralGoogle Scholar
  36. Rossi S, Hallett M, Rossini PM, Pascual-Leone A (2011) Screening questionnaire before TMS: an update. Clin Neurophysiol 122:1686CrossRefPubMedGoogle Scholar
  37. Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di IR, Di L, Ferreri F, Fitzgerald PB, George MS, Hallett M, Lefaucheur JP, Langguth B, Matsumoto H, Miniussi C, Nitsche MA, Pascual-Leone A, Paulus W, Rossi S, Rothwell JC, Siebner HR, Ugawa Y, Walsh V, Ziemann U (2015) Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol 126:1071–1107CrossRefPubMedGoogle Scholar
  38. Shadmehr R, Smith MA, Krakauer JW (2010) Error correction, sensory prediction, and adaptation in motor control. Annu Rev Neurosci 33:89–108CrossRefPubMedGoogle Scholar
  39. Shafeie M, Manifar S, Milosevic M, McConville KM (2012) Arm movement effect on balance. Conf Proc IEEE Eng Med Biol Soc 2012:4549–4552PubMedGoogle Scholar
  40. Shafi MM, Brandon WM, Oberman L, Cash SS, Pascual-Leone A (2014) Modulation of EEG functional connectivity networks in subjects undergoing repetitive transcranial magnetic stimulation. Brain Topogr 27:172–191CrossRefPubMedPubMedCentralGoogle Scholar
  41. Shibasaki H, Hallett M (2006) What is the bereitschaftspotential? Clin Neurophysiol 117:2341–2356CrossRefPubMedGoogle Scholar
  42. Smaers JB, Steele J, Case CR, Cowper A, Amunts K, Zilles K (2011) Primate prefrontal cortex evolution: human brains are the extreme of a lateralized ape trend. Brain Behav Evol 77:67–78CrossRefPubMedGoogle Scholar
  43. Stefan K, Gentner R, Zeller D, Dang S, Classen J (2008) Theta-burst stimulation: remote physiological and local behavioral after-effects. Neuroimage 40:265–274CrossRefPubMedGoogle Scholar
  44. Tokuno CD, Taube W, Cresswell AG (2009) An enhanced level of motor cortical excitability during the control of human standing. Acta Physiol (Oxf) 195:385–395CrossRefPubMedGoogle Scholar
  45. Tomita H, Fujiwara K, Mori E, Sakurai A (2012) Effects of anticipation certainty on preparatory brain activity and anticipatory postural adjustments associated with voluntary unilateral arm movement while standing. Hum Mov Sci 31:578–591CrossRefPubMedGoogle Scholar
  46. Winter DA (1995) A.B.C. (Anatomy, Biomechanics, Control) of balance during standing and walking. Waterloo BiomechanicsGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • David Cioncoloni
    • 1
  • Deborah Rosignoli
    • 2
  • Matteo Feurra
    • 3
    • 4
  • Simone Rossi
    • 3
  • Marco Bonifazi
    • 2
  • Alessandro Rossi
    • 2
  • Riccardo Mazzocchio
    • 5
  1. 1.U.O.P. Professioni della RiabilitazioneAzienda Ospedaliera Universitaria SeneseSienaItaly
  2. 2.Dipartimento di Scienze Mediche, Chirurgiche e NeuroscienzeUniversità di SienaSienaItaly
  3. 3.Dipartimento di Scienze Mediche, Chirurgiche e Neuroscienze, Brain Investigation & Neuromodulation Lab. (Si-BIN Lab)University of SienaSienaItaly
  4. 4.School of Psychology, Centre for Cognition and Decision MakingNational Research University, Higher School of EconomicsMoscowRussian Federation
  5. 5.Neurologia e Neurofisiologia Clinica, Dipartimento di Scienze Neurologiche e Neurosensoriali, Azienda OspedalieraUniversitaria SeneseSienaItaly

Personalised recommendations