Skip to main content

Coordination of muscle torques stabilizes upright standing posture: an UCM analysis

Abstract

The control of upright stance is commonly explained on the basis of the single inverted pendulum model (ankle strategy) or the double inverted pendulum model (combination of ankle and hip strategy). Kinematic analysis using the uncontrolled manifold (UCM) approach suggests, however, that stability in upright standing results from coordinated movement of multiple joints. This is based on evidence that postural sway induces more variance in joint configurations that leave the body position in space invariant than in joint configurations that move the body in space. But does this UCM structure of kinematic variance truly reflect coordination at the level of the neural control strategy or could it result from passive biomechanical factors? To address this question, we applied the UCM approach at the level of muscle torques rather than joint angles. Participants stood on the floor or on a narrow base of support. We estimated torques at the ankle, knee, and hip joints using a model of the body dynamics. We then partitioned the joint torques into contributions from net, motion-dependent, gravitational, and generalized muscle torques. A UCM analysis of the structure of variance of the muscle torque revealed that postural sway induced substantially more variance in directions in muscle torque space that leave the Center of Mass (COM) force invariant than in directions that affect the force acting on the COM. This difference decreased when we decorrelated the muscle torque data by randomizing across time. Our findings show that the UCM structure of variance exists at the level of muscle torques and is thus not merely a by-product of biomechanical coupling. Because muscle torques reflect neural control signals more directly than joint angles do, our results suggest that the control strategy for upright stance involves the task-specific coordination of multiple degrees of freedom.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Creath R, Kiemel T, Horak F, Peterka R, Jeka J (2005) A unified view of quiet and perturbed stance: simultaneous co-existing excitable modes. Neurosci Lett 377(2):75–80. doi:10.1016/j.neulet.2004.11.071

    Article  CAS  PubMed  Google Scholar 

  • Danna-Dos-Santos A, Slomka K, Zatsiorsky VM, Latash ML (2007) Muscle modes and synergies during voluntary body sway. Exp Brain Res 179(4):533–550. doi:10.1007/s00221-006-0812-0

    Article  PubMed  Google Scholar 

  • de Freitas SM, Scholz JP (2010) A comparison of methods for identifying the Jacobian for uncontrolled manifold variance analysis. J Biomech 43(4):775–777. doi:10.1016/j.jbiomech.2009.10.033

    Article  PubMed  Google Scholar 

  • de Looze MP, Kingma I, Bussmann JB, Toussaint HM (1992) Validation of a dynamic linked segment model to calculate joint moments in lifting. Clin Biomech 7(3):161–169. doi:10.1016/0268-0033(92)90031-X

    Article  Google Scholar 

  • Galloway JC, Koshland GF (2002) General coordination of shoulder, elbow and wrist dynamics during multijoint arm movements. Exp Brain Res 142(2):163–180. doi:10.1007/s002210100882

    Article  PubMed  Google Scholar 

  • Gera G, Freitas S, Latash M, Monahan K, Schoner G, Scholz J (2010) Motor abundance contributes to resolving multiple kinematic task constraints. Mot Control 14(1):83–115

    Google Scholar 

  • Horak FB, Nashner LM, Diener HC (1990) Postural strategies associated with somatosensory and vestibular loss. Exp Brain Res 82(1):167–177

    Article  CAS  PubMed  Google Scholar 

  • Hsu WL, Scholz JP (2011) Motor abundance supports multitasking while standing. Hum Mov Sci. doi:10.1016/j.humov.2011.07.017

    PubMed  PubMed Central  Google Scholar 

  • Hsu WL, Scholz JP, Schoner G, Jeka JJ, Kiemel T (2007) Control and estimation of posture during quiet stance depends on multijoint coordination. J Neurophysiol 97(4):3024–3035. doi:10.1152/jn.01142.2006

    Article  PubMed  Google Scholar 

  • Hsu WL, Lin KH, Yang RS, Cheng CH (2014) Use of motor abundance in old adults in the regulation of a narrow-based stance. Eur J Appl Physiol 114(2):261–271. doi:10.1007/s00421-013-2768-7

    Article  PubMed  Google Scholar 

  • Jeka J, Oie K, Schoner G, Dijkstra T, Henson E (1998) Position and velocity coupling of postural sway to somatosensory drive. J Neurophysiol 79(4):1661–1674

    CAS  PubMed  Google Scholar 

  • Khatib O (1987) A unified approach for motion and force control of robot manipulators—the operational space formulation. IEEE J Robot Autom 3(1):43–53

    Article  Google Scholar 

  • Khatib O (1995) Internal properties in robotic manipulation: an object-level framework. Int J Robot Res 14(1):19

    Article  Google Scholar 

  • Klous M, Danna-dos-Santos A, Latash ML (2010) Multi-muscle synergies in a dual postural task: evidence for the principle of superposition. Exp Brain Res 202(2):457–471. doi:10.1007/s00221-009-2153-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Krishnamoorthy V, Goodman S, Zatsiorsky V, Latash ML (2003) Muscle synergies during shifts of the center of pressure by standing persons: identification of muscle modes. Biol Cybern 89(2):152–161. doi:10.1007/s00422-003-0419-5

    Article  PubMed  Google Scholar 

  • Krishnamoorthy V, Latash ML, Scholz JP, Zatsiorsky VM (2004) Muscle modes during shifts of the center of pressure by standing persons: effect of instability and additional support. Exp Brain Res 157(1):18–31. doi:10.1007/s00221-003-1812-y

    Article  PubMed  Google Scholar 

  • Krishnamoorthy V, Yang JF, Scholz JP (2005) Joint coordination during quiet stance: effects of vision. Exp Brain Res 164(1):1–17. doi:10.1007/s00221-004-2205-6

    Article  PubMed  Google Scholar 

  • Krishnamoorthy V, Scholz JP, Latash ML (2007) The use of flexible arm muscle synergies to perform an isometric stabilization task. Clin Neurophysiol 118(3):525–537. doi:10.1016/j.clinph.2006.11.014

    Article  PubMed  PubMed Central  Google Scholar 

  • Latash M (2008) Neurophysiological basis of movement, 2nd edn. Human Kinetics, Champaign

    Google Scholar 

  • Loram ID, Lakie M (2002) Human balancing of an inverted pendulum: position control by small, ballistic-like, throw and catch movements. J Physiol 540(Pt 3):1111–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin TA, Norris SA, Greger BE, Thach WT (2002) Dynamic coordination of body parts during prism adaptation. J Neurophysiol 88(4):1685–1694

    PubMed  Google Scholar 

  • McCollum G, Leen TK (1989) Form and exploration of mechanical stability limits in erect stance. J Mot Behav 21(3):225–244

    Article  CAS  PubMed  Google Scholar 

  • Muller H, Sternad D (2003) A randomization method for the calculation of covariation in multiple nonlinear relations: illustrated with the example of goal-directed movements. Biol Cybern 89(1):22–33. doi:10.1007/s00422-003-0399-5

    PubMed  Google Scholar 

  • Murray RM, Li Z, Sastry SS (1994) A mathematical introduction to robotic manipulation. CRC Press, Boca Raton

    Google Scholar 

  • Park S, Horak FB, Kuo AD (2004) Postural feedback responses scale with biomechanical constraints in human standing. Exp Brain Res 154(4):417–427. doi:10.1007/s00221-003-1674-3

    Article  PubMed  Google Scholar 

  • Park E, Schoner G, Scholz JP (2012) Functional synergies underlying control of upright posture during changes in head orientation. PLoS One 7(8):e41583. doi:10.1371/journal.pone.0041583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reisman DS, Scholz JP, Schoner G (2002) Coordination underlying the control of whole body momentum during sit-to-stand. Gait Posture 15(1):45–55

    Article  PubMed  Google Scholar 

  • Scholz JP, Schöner G (2014) Use of the uncontrolled manifold (UCM) approach to understand motor variability, motor equivalence, and self-motion. In: Levin MF (ed) Progress in motor control. Springer, New York, pp 91–100

    Google Scholar 

  • Scholz JP, Schoner G (1999) The uncontrolled manifold concept: identifying control variables for a functional task. Exp Brain Res 126(3):289–306

    Article  CAS  PubMed  Google Scholar 

  • Scholz JP, Schoner G, Latash ML (2000) Identifying the control structure of multijoint coordination during pistol shooting. Exp Brain Res 135(3):382–404

    Article  CAS  PubMed  Google Scholar 

  • Scholz JP, Danion F, Latash ML, Schoner G (2002) Understanding finger coordination through analysis of the structure of force variability. Biol Cybern 86(1):29–39

    Article  PubMed  Google Scholar 

  • Scholz JP, Kang N, Patterson D, Latash ML (2003) Uncontrolled manifold analysis of single trials during multi-finger force production by persons with and without Down syndrome. Exp Brain Res 153(1):45–58. doi:10.1007/s00221-003-1580-8

    Article  PubMed  Google Scholar 

  • Scholz JP, Schoner G, Hsu WL, Jeka JJ, Horak F, Martin V (2007) Motor equivalent control of the center of mass in response to support surface perturbations. Exp Brain Res 180(1):163–179. doi:10.1007/s00221-006-0848-1

    Article  CAS  PubMed  Google Scholar 

  • Schoner G, Scholz JP (2007) Analyzing variance in multi-degree-of-freedom movements: uncovering structure versus extracting correlations. Mot Control 11(3):259–275

    Google Scholar 

  • Shinohara M, Scholz JP, Zatsiorsky VM, Latash ML (2004) Finger interaction during accurate multi-finger force production tasks in young and elderly persons. Exp Brain Res 156(3):282–292. doi:10.1007/s00221-003-1786-9

    Article  PubMed  Google Scholar 

  • Verrel J, Lovden M, Lindenberger U (2010) Motor-equivalent covariation stabilizes step parameters and center of mass position during treadmill walking. Exp Brain Res 207(1-2):13–26

    Article  PubMed  Google Scholar 

  • Verrel J (2011) A formal and data-based comparison of measures of motor-equivalent covariation. J Neurosci Methods 200(2):199–206. doi:10.1016/j.jneumeth.2011.04.006

    Article  PubMed  Google Scholar 

  • Verrel J, Pradon D, Vuillerme N (2012) Persistence of motor-equivalent postural fluctuations during bipedal quiet standing. PLoS One 7(10):e48312. doi:10.1371/journal.pone.0048312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winter DA (2009) Biomechanics and motor control of human movement, vol 4. Wiley, Hoboken

    Book  Google Scholar 

  • Winter DA, Patla AE, Prince F, Ishac M, Gielo-Perczak K (1998) Stiffness control of balance in quiet standing. J Neurophysiol 80:1211–1221

    CAS  PubMed  Google Scholar 

  • Yen JT, Chang YH (2009) Control strategy for stabilizing force with goal-equivalent joint torques is frequency-dependent during human hopping. Conf Proc IEEE Eng Med Biol Soc 2009:2115–2118. doi:10.1109/IEMBS.2009.5334304

    PubMed  Google Scholar 

  • Yen JT, Chang YH (2010) Rate-dependent control strategies stabilize limb forces during human locomotion. J R Soc Interface 7(46):801–810. doi:10.1098/rsif.2009.0296

    Article  PubMed  PubMed Central  Google Scholar 

  • Yen JT, Auyang AG, Chang YH (2009) Joint-level kinetic redundancy is exploited to control limb-level forces during human hopping. Exp Brain Res 196(3):439–451. doi:10.1007/s00221-009-1868-4

    Article  PubMed  Google Scholar 

  • Zajac FE, Gordon ME (1989) Determining muscle’s force and action in multi-articular movement. Exerc Sport Sci Rev 17:187–230

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Darcy Reisman for useful discussions and corrections. We also thank John P. Scholz (R.I.P.) for his effort and mentoring for the very early stage of this manuscript. This project was supported by the National Science Foundation Grant #0957920.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eunse Park.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 166 kb)

Supplementary material 2 (PDF 25 kb)

Appendix: The relationship between forces at the COM and joint torques

Appendix: The relationship between forces at the COM and joint torques

Let x be a point on the body given by the position of the COM in reference configuration.

The equation of motion of the full body is given by

$$M\left( \theta \right)\ddot{\theta } + C\left( {\theta ,\dot{\theta }} \right)\dot{\theta } + G\left( \theta \right) = \tau$$
(1)

where M(θ) is the inertia or mass matrix of the full dynamical equations of motion, \(C(\theta ,\dot{\theta })\dot{\theta }\) are the centrifugal and Coriolis joint torques, G(θ) is gravity torque vector, and τ is the vector of muscle torques. J is the kinematic Jacobian relating displacement of the COM position x to changes in joint angles.

$$\partial x = J \cdot \partial \theta$$
(2.1)
$$\Rightarrow J = \frac{\partial x}{\partial \theta }$$
(2.2)

In a given body configuration θ, the relationship between joint torques τ.

And the force F that these ⇒torques exert on the COM is linear and given by

$$F = \bar{J}^{\text{T}} \tau$$
(3)

The general solution of this equation is

$$\tau = J^{\text{T}} F + \left[ {I - J^{\text{T}} \bar{J}^{\text{T}} } \right]\tau_{0}$$
(4)

where τ 0 is and arbitrary joint torque vector. Together with Eq. 1 we get

$$\left[ {I - J^{\text{T}} \bar{J}^{\text{T}} } \right]\tau_{0} = M\ddot{\theta } + C + G$$
(5)

In the dynamic case with gravity, torques \([I - J^{\text{T}} \bar{J}^{\text{T}} ]\tau_{0}\) that do not affect the endpoint force in Eq. 4 must satisfy the following dynamical constraint.

$$JM^{ - 1} \left[ {I - J^{\text{T}} \bar{J}^{\text{T}} } \right]\tau_{0} = 0$$
(6)

We solve the Eq. 6 for \(\bar{J}^{\text{T}}\)

$$JM^{ - 1} \tau_{0} - JM^{ - 1} J^{\text{T}} \bar{J}^{\text{T}} \tau_{0} = 0$$
$$JM^{ - 1} J^{\text{T}} \bar{J}^{\text{T}} = JM^{ - 1}$$
$$\bar{J}^{\text{T}} = \left[ { JM^{ - 1} J^{\text{T}} } \right]^{ - 1} JM^{ - 1}$$
(7)
$$\bar{J} = M^{ - 1} J^{\text{T}} \left( {JM^{ - 1} J^{\text{T}} } \right)^{ - 1}$$
(8)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, E., Reimann, H. & Schöner, G. Coordination of muscle torques stabilizes upright standing posture: an UCM analysis. Exp Brain Res 234, 1757–1767 (2016). https://doi.org/10.1007/s00221-016-4576-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-016-4576-x

Keywords